Latex allergy
Occupational aspects of management

Further copies of these guidelines are available from NHS Plus:
Email: nhsplus@nhs.net

NHS Plus
Email: nhsplus@nhs.net
www.nhsplus.nhs.uk

Occupational Health Clinical Effectiveness Unit
Royal College of Physicians of London
11 St Andrews Place, Regent's Park, London NW1 4LE
www.rcplondon.ac.uk

Supported by:
The Faculty of Occupational Medicine
of the Royal College of Physicians
6 St Andrews Place, Regent’s Park, London NW1 4LB
www.facoccmed.ac.uk
Latex allergy

Occupational aspects of management

A national guideline

2008
Acknowledgements

We are grateful to the following colleagues who have commented at different stages on various sections and drafts of the manuscripts:
Dr Gavin Spickett, Consultant, Senior Lecturer in Immunology, Royal Victoria Infirmary, Newcastle; Dr Jon Poole, Consultant Occupational Physician, Dudley Hospitals NHS Trust; Dr Andrew Hilliard, Consultant Occupational Physician, Norfolk and Norwich NHS Trust.

We would like to thank Susan Paterson, Research Librarian, NHS Plus, for her support with the literature searches and retrieval of papers, and Helen Banks of the Department of Health for administrative support.

NHS Plus

The NHS Plus Project aims to improve the quality and delivery of occupational health services to NHS staff and in turn increase the availability of NHS Plus services to small and medium employers. In addition to commissioning the Occupational Health Clinical Effectiveness Unit to produce evidence-based guidelines and conduct national audits, the Project has work strands to improve the delivery of services, provide an improved trading model and improve the strategic leadership of occupational health services in the NHS.

The Royal College of Physicians

The Royal College of Physicians plays a leading role in the delivery of high-quality patient care by setting standards of medical practice and promoting clinical excellence. We provide physicians in the United Kingdom and overseas with education, training and support throughout their careers. As an independent body representing over 20,000 Fellows and Members worldwide, we advise and work with government, the public, patients and other professions to improve health and healthcare.

Occupational Health Clinical Effectiveness Unit

The Occupational Health Clinical Effectiveness Unit at the Royal College of Physicians aims to measure and raise standards, and to reduce variability, of occupational healthcare through the development of evidence-based guidelines and conduct of national clinical audits.

Faculty of Occupational Medicine

Our aim is for healthy working lives through:
- elimination of preventable injury and illness caused or aggravated by work
- maximising people’s opportunities to benefit from healthy and rewarding work while not putting themselves or others at unreasonable risk
- access for everyone to advice from a competent occupational physician as part of comprehensive occupational health and safety services.

Citation for this document

Copyright

All rights reserved. No part of this publication may be reproduced in any form (including photocopying or storing it in any medium by electronic means and whether or not transiently or incidentally to some other use of this publication) without the written permission of the copyright owner. Applications for the copyright owner’s written permission to reproduce any part of this publication should be addressed to the publisher.

Copyright © 2008
Royal College of Physicians

Review date: 2012

Royal College of Physicians of London
11 St Andrews Place, London NW1 4LE
www.rcplondon.ac.uk
Registered Charity No 210508

Cover design: WLG Design
Typeset by Dan-Set Graphics, Telford, Shropshire
Printed by The Lavenham Press Ltd, Sudbury, Suffolk
Contents

Acknowledgements ii
Guideline Development Group v
Executive summary vii

1 Introduction
Importance of latex allergy in an occupational health setting 1

2 Background
Types of rubber allergy and causes 3
Epidemiology of latex allergy 4
Issues in healthcare 4
Occupational management of latex allergy 5

3 Methodology
Key question 6
Literature review 6
Selection of papers for critical appraisal 7
Development of recommendations 8
Good practice points 10
Limitations of the literature review 10

4 Recommendations for occupational management of latex allergy
Airborne levels of latex protein 12
Glove and cost analysis 12
Substitution by powder-free latex/latex-free gloves: individuals 13
Substitution by powder-free latex/latex-free gloves: institutions/‘primary prevention’ 14
Respiratory protection 14
Use of hand creams 15
Immunotherapy 15
Education and policy issues 15
Quality of life/employment 16
Smoking 16

5 Recommendations for further research 17

6 Suggested audit criteria 18
References 19

Appendices
1 Terms used in search strategy 24
2 Critical appraisal form 26
3 Evidence tables 28
Guideline Development Group

Guideline leader
Dr Syed M Ahmed, Specialist Registrar in Occupational Medicine, East Kent Hospitals NHS Trust

Director of NHS Plus evidence-based guideline project
Dr Ira Madan, Consultant and Honorary Senior Lecturer in Occupational Medicine, Guy’s and St Thomas’ NHS Foundation Trust, London, and King’s College London

External Assessors
Privatdozent Dr Henning Allmers, MPH, Director of Occupational Medicine, Department of Dermatology, Environmental Medicine and Health Sciences, University of Osnabrueck, Germany
Dr Mabs Chowdhury, Consultant in Occupational Dermatology, Welsh Institute of Dermatology, University Hospital of Wales, Cardiff

Guideline Development Group Members
Dr Anil Adisesh, Consultant Occupational Physician, Centre for Workplace Health, Health and Safety Laboratory Buxton, and Sheffield Teaching Hospitals NHS Foundation Trust
Professor Tar-Ching Aw, Occupational Health Unit, Kent Institute of Medicine and Health Sciences, University of Kent, Canterbury
Dr Blandina Blackburn, Consultant Occupational Physician, Royal Berkshire and Battle NHS Trust
Mrs Catherine Boyle, Research Scientist, Health and Safety Executive
Dr Paul Cullinan, Consultant Chest Physician and Reader in Respiratory Epidemiology, Department of Occupational and Environmental Medicine, National Heart and Lung Institute, London
Dr Mark Hudson-Peacock, Consultant Dermatologist, East Kent Hospitals NHS Trust, Canterbury
Mrs Aleks Kinay, Chair of Latex Allergy Support Group UK
Mr William Thomas, Consultant Surgeon, Royal Hallamshire Hospital, Sheffield; Member of Council of Royal College of Surgeons of England
Mr Des Tunstill, Occupational Health Nurse Manager, Dartford and Gravesham NHS Trust
Mrs Annette Woods, Research Associate, East Kent Hospitals NHS Trust, University of Kent

Conflicts of Interest: None declared.
Executive summary

About a quarter of the world’s demand for elastic products is supplied by natural rubber derived from the *Hevea brasiliensis* tree. Natural rubber latex (NRL) from this tree is used in the production of numerous rubber products found at home and at work including gloves, balloons, adhesive tape and bandages, condoms and catheters, rubber bands, dental dams, tourniquets and resuscitation equipment.

Allergy to certain latex proteins emerged as an occupational disease in the 1980s and continues to be an important occupational health problem as natural rubber products are used increasingly worldwide, particularly in healthcare. Symptoms of the immediate type of allergy produced range from rash, itchy or runny eyes or nose, sneezing, and coughing to chest tightness, shortness of breath and anaphylactic shock. The symptoms experienced depend in part on the route of exposure, which can be by direct contact with skin or mucosa, or by inhalation.

Although there is a large body of research on latex allergy, few studies have examined occupational health interventions. This systematic review summarises current evidence and is intended to assist occupational health professionals, managers and other interested parties in providing advice on occupational health interventions to address the problem of latex allergy from both individual and institutional perspectives. The review is concerned particularly with issues relating to gloves, as these represent by far the main occupational use of latex. Latex allergy of the immediate type is distinguished in this review from contact dermatitis caused by delayed hypersensitivity (type IV allergy) to chemicals that are added to latex during processing. The main focus of this review is on type I or immediate-type allergy to latex proteins, which has a reported prevalence of up to 17% in certain occupational groups.

Key findings and recommendations

- The use of powder-free, low protein latex gloves as an alternative to powdered latex gloves significantly reduces the incidence of latex allergy and latex-induced asthma, as well as the prevalence of latex-related symptoms. Powdered latex gloves should therefore not be used in the workplace.
- At a national and local level, a policy that encourages switching from powdered latex gloves to powder-free low protein latex gloves is a proven effective method of reducing the incidence of latex allergy.
- Employees with latex allergy, latex sensitivity or latex-induced asthma should use non-latex gloves.
- In employees who are latex allergic/sensitised, taking latex avoidance measures results in cessation or diminution of symptoms. Markers of sensitisation decrease regardless of whether co-workers continue to use powder-free low protein latex gloves or latex-free gloves.
- In employees with latex-induced asthma or rhinitis, the use of powder-free low protein gloves by their colleagues reduces symptoms and indices of severity in the affected employee to a similar degree as the use of non-latex gloves by colleagues.
Latex allergy: occupational aspects of management

- All but the most severe cases of latex allergy and latex-induced asthma can be managed without the need for redeployment, ill health retirement or termination of employment. Adjustments include careful personal avoidance of latex at work and minor changes in the workplace.

- There is a lack of published primary research comparing occupational interventions for those who are sensitised to latex (without symptoms), with those with clinical latex allergy.

- No reports of new cases of latex allergy arising from non-powdered low protein latex glove use were found.

The evidence does not therefore support a complete ban on the use of latex gloves. Institutions should judge whether their needs would be met better by the use of latex-free or powder-free latex gloves, or use of both in different settings, while taking into account the desirable and undesirable properties of both materials.
1 Introduction

The aim of this review is to provide an evidence-based guideline on the management of latex allergy (LA) in the workplace. It is intended to assist occupational and other healthcare professionals, managers, employees and other interested parties in providing advice on the occupational aspects of the management of latex allergy, based on current evidence. Where evidence does not exist or is not robust, recommendations for further research are made. The review does not deal with issues surrounding the clinical diagnosis of latex allergy, nor is it intended to cover aspects of employers’ legal obligations with respect to latex allergy in the workplace. For practical guidance on issues such as health surveillance, see the Health and Safety Executive’s website (www.hse.gov.uk).

Use of the term ‘latex’ in the following text refers to natural rubber latex (NRL) and does not mean that all latex proteins are always allergenic.

Importance of latex allergy in an occupational health setting

Latex allergy imposes a public health burden with costs to the individual and the employer, as well as to the economy.

Impact on the allergic employee

Impact may be considered in terms of both physical and economic impairment. Individuals may experience discomfort, inconvenience and even life-threatening symptoms from latex allergy. There may be impact on their personal lives, e.g. inability to blow up balloons, or potentially life-threatening symptoms on ingesting food that has been handled with powdered NRL gloves.1–4 They may also have periods of sickness absence or be unable to continue working in the same role, resulting in loss or reduction of their income.5

Costs to the employer

These include increased levels of sickness absence,6 impaired performance, and costly pension benefits and litigation claims.7 There may be additional costs incurred in implementing adjustments to work so that latex-allergic employees can be accommodated and remain in employment. Further costs derive from necessary changes to the working environment and from any need for enhanced health surveillance.

Costs to society

These comprise costs to the state arising from early pension payments, sickness absence and medical treatment of latex allergy.

Impact on third parties

There can be considerable implications for latex allergy sufferers (for example, patients in hospitals) whose lives may be at risk from exposure to latex arising from its occupational use.
This important issue is outside the remit of this guideline.

It is important that occupational health professionals are well informed about latex allergy to enable them to provide accurate occupational health advice to both employees and their employers.
2 Background

Over the past 20 years there has been a steep increase in the use of protective gloves in the UK. The largest increase in use has been by healthcare workers, and stemmed primarily from concerns about occupational exposure to blood-borne viruses. Because of their excellent elasticity, durability, tactile properties, low microbial/fluid penetration rate and low cost, natural rubber latex (NRL) gloves have been most widely used. The use of disposable powdered NRL gloves increased exponentially after 1987. According to the Medical Devices Agency Bulletin 1996, 117 million pairs of latex gloves were being supplied to the NHS annually in 1992, but few reports of latex sensitivity had been received at that time. There is now sufficient evidence that healthcare workers are an occupational group at increased risk of latex allergy. In addition, other occupational groups at increased risk of latex allergy include food handlers, hairdressers and construction workers. Other frequent users of latex gloves (eg members of the police and nursery workers) may also be at increased risk.

Types of rubber allergy and causes

Clinical effects of rubber allergy are attributable to either type I (immediate-type) hypersensitivity or type IV (delayed-type) hypersensitivity.

Type I, or immediate-type hypersensitivity

Type I, or immediate-type hypersensitivity, is manifest by IgE (immunoglobulin E)-associated reactions to latex proteins, precipitated in individuals who have already developed latex-specific IgE antibodies from previous exposure and sensitisation. At least 13 proteins have been identified by the International Union of Immunological Societies (IUIS) as latex-specific allergens capable of causing type I allergy. Clinical manifestations may be cutaneous, ocular, respiratory or systemic. They range from contact urticaria, itching of the skin and eyes, sneezing, bronchospasm and asthma, to anaphylaxis (which may occur in people previously unknown to be sensitised). Cornstarch powder (absorbable dusting powder) on powdered latex gloves, originally introduced to facilitate donning, increases the risk of sensitisation as the latex proteins are carried and made airborne by the powder particles. The absorbable dusting powder in itself has not been shown to cause type I allergy.

Type IV, or delayed-type hypersensitivity

Type IV hypersensitivity reactions are more common and usually represent cell-mediated reactions to the chemical additives in rubber rather than the latex proteins. Strictly speaking, these should therefore be considered as a rubber allergy rather than a latex allergy. The clinical presentation is a vesicular, eczematous, pruritic dermatitis appearing hours to days after contact with the allergen. Large-scale patch-testing studies have been undertaken using individual rubber additives and established allergens include rubber accelerators of vulcanisation (mercaptobenzothiazoles, carbamates and especially thiurams), antioxidants (eg amines), and organic pigments. In latex gloves, the most common type IV allergens are the thiurams, and screening panels for these are found in the most basic patch-test trays. Since 1992, some
cases have also been reported of type IV allergy to latex proteins, without the presence of rubber chemicals, ie protein contact dermatitis, with or without concomitant type I allergy. However, these are rare.

Epidemiology of latex allergy

During the mid-1990s, latex allergy became a major occupational hazard in the healthcare industry, with the prevalence of type I allergy (based on skin prick testing) estimated to be as high as 17% in healthcare workers. Estimates of prevalence in other occupational groups range from 4% in cleaners, 6% in painters and 7% in construction workers to just over 17% in food handlers and hairdressers.

Incidence/prevalence studies of latex allergy are difficult to compare as they use different selection criteria for inclusion, and different definitions of positivity, which may include any combination of symptoms, skin tests and serological tests. Not all individuals with skin test reactions or specific IgE antibodies to NRL ultimately manifest allergic disease. Thus, there is a distinction between immunological latex ‘sensitisation’ (the presence of a positive skin prick test to latex allergens or demonstration of specific IgE antibodies in serum), and clinical latex ‘allergy’ (immediate-type allergic symptoms caused by contact with latex in a sensitised individual). There are no universally agreed standardised symptom questionnaires, and a variety of formulations are used in skin tests and immunological assays, making a standardised comparison across studies difficult. Evidence from the Cochrane Database suggests that, as with all medical practice, a clinical history is essential in establishing type I hypersensitivity to latex and test results should not be used in isolation. The incidence of clinical sensitisation may be seriously overestimated if only laboratory parameters are used.

The Health and Occupation Reporting Network (THOR) Surveillance of Work-Related and Occupational Respiratory Disease (SWORD) scheme run by the University of Manchester Centre for Occupational and Environmental Health has data on latex-induced occupational asthma reported by occupational and respiratory physicians since 1988. These show a decline in the number of reported latex-induced asthma cases from over 60 in 1997, to fewer than five annually in recent years.

Issues in healthcare

Other than in gloves, latex may be used in a number of healthcare and non-healthcare devices including urinary catheters, condoms, elastic bands and venepuncture-related equipment. However, the most significant exposure to healthcare workers has come from the use of latex gloves. They are generally cheap, easy to don, afford good tactile sensitivity and manual dexterity, and offer good barrier protection against viruses and bacteria. Their elasticity is an additional advantage in healthcare since any pinhole needlestick perforations in latex gloves tend to close around the site of penetration, thus sealing the hole and potentially reducing blood contamination in needlestick injuries. Evidence from the Cochrane Database suggests that double gloving, eg during orthopaedic or dental surgery, significantly reduces perforations to innermost gloves. Because of the advantageous properties, surgeons and laboratory workers needing fine dexterity tend to prefer latex gloves to those made from alternative materials. However, for routine non-sterile use, alternatives to latex are increasingly being used in healthcare.
Occupational management of latex allergy

Because of the high frequency of glove use, most of the research on latex allergy has been undertaken in healthcare workers. Environmental sampling studies confirm that the frequency of latex glove use is a strong determinant of airborne latex allergen levels in hospitals, which in turn are closely correlated with the frequency of latex allergic symptoms in those exposed. Protein and allergen content can vary greatly in natural rubber latex gloves: 20- to 100-fold differences in protein concentrations and 3,000-fold differences in allergen concentration have been reported between brands. Protein content may not always reflect the level of allergenicity of gloves, but there has been a dramatic decrease in the latex protein content of gloves in recent years. This may be both from an increasing preference for, and therefore manufacture of, powder-free low-protein gloves, and also from improvements in manufacturing processes that generally reduce protein content in gloves. Data from the UK Surgical Materials Testing Laboratory analysing glove protein content suggest that in 1996, powdered latex gloves contained up to 515 µg/g of latex protein, whereas by 2003, powder-free latex examination gloves contained up to 35 µg/g of latex protein, representing a reduction of more than 10-fold.

Powdered gloves have higher latex allergen content than powder-free gloves and there is good evidence that their use is associated with a substantially higher prevalence and rate of latex sensitisation. The cornstarch particles added to gloves as a donning agent have been shown to carry latex particles when airborne and thus greatly increase latex aeroallergen exposure. Latex aeroallergen levels are clearly correlated with latex allergic symptoms. As with all occupational respiratory allergens, airborne exposure should generally be reduced as far as possible; for latex, no threshold has been established below which there is no risk of sensitisation. Once a diagnosis of type I latex allergy has been made, further exposure of the affected individual to latex allergens should be minimised to prevent further symptom progression. However, the optimal occupational management is unclear. Some clinicians may recommend eliminating exposure completely by redeployment, while others may advocate switching to powder-free, low protein and low-allergenic latex gloves. The emergence of alternative glove materials, such as polyvinylchloride, neoprene, nitrile and others, has offered a third option, not only for managing individual cases of latex allergy, but also as a potential strategy for eliminating glove-related latex allergy completely from the workplace. In cases of confirmed latex allergy, there are issues to consider around whether it is necessary to eliminate the use of latex gloves by co-workers, or if it is reasonable to allow the co-workers to continue with powder-free low protein gloves. As the use of latex alternatives increases, a new set of problems and challenges is emerging such as issues of barrier effectiveness, tactile sensitivity, durability, and type IV hypersensitivity. It is conceivable that changing to latex alternatives may only substitute one set of problems for another. More research is needed in this area in the future. In particular, it is important that national surveillance, to allow early recognition of the onset of any widespread occupational problems, is maintained. The evaluation of alternative materials is outside the remit of this review.
3 Methodology

Key question

A multidisciplinary Guideline Development Group (GDG) was formed in 2005. The following key question was discussed at the first meeting:

What is the optimal occupational management of individuals found to have:
(1) type I sensitisation or latex-allergic disease
(2) type IV latex-allergic disease?

In view of the time and resources available to the group, it was decided to focus on latex gloves and exclude from the study those papers looking at comparisons with, and the risks from, non-latex gloves.

The key question to be answered was therefore:

What is the optimal occupational management of individuals found to have:
(1) type I sensitisation or latex-allergic disease
(2) type IV rubber-allergic disease?

The following interventions were to be compared:
(1) Deploy with low-protein gloves (for type I).
(2) Deploy with non-latex gloves.
(3) Deploy with gloves in same environment (co-workers continue to wear low-protein latex gloves).
(4) Deploy with gloves in a ‘latex-free’ environment (co-workers also change to latex-free gloves).

The NICE guideline development methodology suggests the use of a Population-Intervention-Comparison-Outcome (PICO) table to focus on the key issues addressed by an evidence-based guideline development project. Table 1 summarises the key elements of this review.

Literature review

Details of the literature search strategy are provided in Appendix 1.

Search dates

Papers from 1 January 1990 to 1 January 2006 were searched but only papers from 1997 onwards were considered so as to look at the literature published following the UK Medical Devices Agency issued latex advice (Device Bulletin DB 9601) in 1996.9
Method

The published literature was searched using the following databases: Medline, PubMed, Embase, HSE line, OSH-ROM, The Health Development Agency Public Health Evidence Base, Health Periodicals Database, Evidence Based Periodicals Database, Cochrane Library, CINAHL, Faculty of Occupational Medicine Library.

Limitations

The search was carried out for all languages but limited to human subjects.

The abstracts were obtained from all papers that had an abstract.

Those papers which did not have abstracts, but met the search criteria were also listed. The GDG chose to study the published literature from 1997, the year following publication of latex advice (Device Bulletin DB 9601) by the Medical Devices Agency in 1996.9

Selection of papers for critical appraisal

The GDG leader (GDGL) undertook the literature search outlined in Appendix 2, with support from an information scientist. After discarding duplicates, there were over 3,700 abstracts (see Fig 1). For each year from 1997 to 2006, the GDGL and two senior members of the GDG

<table>
<thead>
<tr>
<th>Population</th>
<th>Known latex type I sensitivity</th>
<th>Known clinical latex allergic disease</th>
<th>Type I allergy</th>
<th>Type IV contact allergy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervention/comparison</td>
<td>Deploy with low protein gloves</td>
<td>Deploy with low protein gloves*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deploy with non-latex gloves</td>
<td>Deploy with non-latex gloves</td>
<td>Deploy with gloves free of the causative allergen (usually chemical additives)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deploy with non-latex gloves in same environment*</td>
<td>Deploy with non-latex gloves in same environment*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– others use low-protein latex gloves</td>
<td>– others use low-protein latex gloves</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deploy with non-latex gloves in ‘latex safe’ environment</td>
<td>Deploy with non-latex gloves in ‘latex safe’ environment</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– others use latex-free gloves</td>
<td>– others use latex-free gloves</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outcome</td>
<td>Prevention of allergic disease progression</td>
<td>Prevention of disease progression</td>
<td>Prevention of disease</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reduction in sensitisation markers</td>
<td>Reduction in symptoms</td>
<td>Reduction in symptoms</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reduction in sensitisation markers</td>
<td>Abolition of symptoms</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abolition of symptoms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study design</td>
<td>RCTs, systematic reviews, cross-sectional and longitudinal studies, case control studies, case reports</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Some literature suggests that even those with type I clinical allergy can become less symptomatic or even asymptomatic with demonstrable reduction in sensitisation markers, by changing gloves used to those which are (powder-free) low protein gloves.

RCT = randomised controlled trial.
reviewed the abstracts. A total of 133 papers that appeared to be related to the key questions were selected for full review by the GDG. The full papers were obtained and distributed to pairs of reviewers from the GDG for independent critical appraisal. All appraisers undertook training in critical appraisal skills. The appraisers were asked to identify any follow-on papers listed in the references of the papers they were appraising. The papers were assessed for methodological quality, using a form adapted from the Critical Appraisal Skills Programme (Appendix 2). The revised Scottish Intercollegiate Guidelines Network (SIGN) grading system (2000) was used to grade each paper (see Box 1). In the event that a pair of appraisers could not reach agreement on the SIGN grading, the paper was passed to the GDGL for discussion with the project director to make a final decision.

Development of recommendations

Draft recommendations for the occupational health management of latex allergy were produced by the GDGL and circulated to the group for comments and feedback. The recommendations were then redrafted, incorporating this feedback, as well as that of the
Many appraised papers were concerned with laboratory measurements rather than with clinical data. Thus it became apparent that the conventional SIGN grading system was inappropriate in some cases. Such studies were graded using a system adapted from the SIGN grading by NICE for studies looking at the efficacy of interventions (see Methods for development of NICE public health guidance, NICE, March 2006).45
Good practice points

Good practice points (GPPs) are practical points that the GDG wishes to emphasise but for which there is not, nor is there likely to be, any research evidence – for example, some aspect of management or treatment that is regarded as such sound clinical advice that nobody is likely to question it. These are not alternatives to evidence-based recommendations, and are only used where there is no other way of highlighting the issue.

Limitations of the literature review

Limitations of the literature review include:

- Publication bias – there is a tendency for studies with positive results to be published preferentially.
- Conflicts of interest – no conflicts of interest were declared by members of the GDG. However, there were papers where potential conflicts of interest had been declared by or could be surmised from the affiliations of the authors (e.g. Malaysian Rubber Council) or the organisations that had fully or in part sponsored the research. Where identified, these have been flagged in the Evidence tables (Appendix 3).
- An element of subjectivity in the reviews depending on reviewers – this could be seen as a potential weakness of the study, although the SIGN methodology followed is well validated. It is commonly used for grading evidence for guidelines, and the system has been subject to international peer review.\(^{46}\)
4 Recommendations for occupational management of latex allergy

This section lists the full evidence-based recommendations developed from the systematic literature review. See Appendix 3 for the complete evidence tables. Although the search strategy used included terms to identify research on type IV hypersensitivity, the screening process identified extremely few papers on type IV allergy that could address the key questions. The vast majority of research dealt with type I allergy and the lack of evidence on type IV allergy is clearly a shortcoming that warrants further research. According to expert opinion, for sufferers of type IV allergy to rubber gloves, the chemical agent should be identified and avoided, bearing in mind that non-latex gloves may also contain the same chemical additives.

The search terms also included those for health surveillance. There was no direct evidence concerning the effectiveness of health surveillance techniques in the early detection of latex allergy or sensitivity. The main findings for type I allergy to latex proteins are in the following sections:

1. Airborne levels of latex protein
2. Glove and cost analysis
3. Substitution by powder-free latex/latex-free gloves: individuals
4. Substitution by powder-free latex/latex-free gloves: institutions/'primary prevention'
5. Respiratory protection
6. Use of hand creams
7. Immunotherapy
8. Education and policy issues
9. Quality of life/employment
10. Smoking
1 Airborne levels of latex protein

Statements

There is a positive exposure–response relationship between latex aeroallergen concentrations and the frequency of latex allergic symptoms. Latex aeroallergen measurement may be helpful in defining and reducing latex exposures with consequent effect on symptom prevalence. (This is an area for further research.)

Evidence

Baur 1998\(^{47}\)

Allmers 1998\(^{39}\)

Recommendation

Those concerned with managing the health risks arising from latex should minimise the concentration of latex protein in the air in order to reduce eye and respiratory symptoms of latex allergy, as well as the incidence of sensitisation to latex. Latex aeroallergen measurement may be helpful in confirming the effects of allergen reduction measures.

Grade

C

GPP

2 Glove and cost analysis

Statement

Where latex gloves are used, the use of non-powdered gloves is the most effective method of reducing occupational latex aeroallergen exposure.

Evidence

Hermesch 1999\(^{40}\)

Allmers 1998\(^{39}\)

Kujala 2002\(^{48}\)

Recommendation

If latex products are used in the workplace, employers should provide powder-free latex products, if such alternatives exist. Employers should particularly ensure that powdered latex gloves are not used in the workplace.

Grade

C

2 Glove and cost analysis

Statement

Examination gloves tend to have higher latex allergen content than surgical gloves. Powdered gloves have higher latex allergen content than powder-free gloves.

Evidence

Koh 2005\(^{38}\)

Recommendation

Users of latex gloves and purchasers should be aware that the risk of developing latex allergy is highest with the use of powdered latex gloves, and that examination gloves may contain more latex allergen than surgical gloves.

Grade

D

2 Glove and cost analysis

Statement

Non-latex surgical gloves have higher failure rates in use and lower user satisfaction than latex gloves.

Evidence

Korniewicz 2004\(^{49}\)

Recommendation

Those concerned with glove purchasing policy should be aware that alternatives to latex gloves may have other associated problems, particularly with failure rates, user satisfaction, and barrier effectiveness. Some other materials may be better than latex for protection against certain chemicals.

Grade

B

GPP
Both non-latex and latex gloves should be changed after two to three hours of use because the barrier of either type of glove becomes compromised with extended use.

<table>
<thead>
<tr>
<th>Statement/recommendation</th>
<th>Grade</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Those concerned with glove purchasing policy should be aware that latex glove protein content may be a poor guide to allergenicity.</td>
<td>D</td>
<td>Mahler 200036</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Statements/recommendations</th>
<th>Grade</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Those concerned with glove purchasing policy should be aware that a switch to powder-free latex gloves can be cost effective (in terms of glove costs, and compensation).</td>
<td>D</td>
<td>Korniewitz 200550 Latza 200551</td>
</tr>
<tr>
<td>Those concerned with glove purchasing policy should be aware that a switch to non-latex gloves can also be cost effective.</td>
<td>D</td>
<td>Philips 199952</td>
</tr>
</tbody>
</table>

(This is an area for further UK-based research.)

3 Substitution by powder-free latex/latex-free gloves: individuals

Statements

In employees with latex allergy or latex sensitisation, the personal avoidance of latex gloves at work reduces symptoms, indices of disease severity and immunological markers of sensitisation.

In employees with latex-induced asthma, the personal avoidance of latex gloves at work reduces symptoms and indices of severity.

Recommendation

Employees with latex allergy, latex sensitisation and latex-induced asthma should use non-latex gloves instead of powdered latex gloves as an effective way of reducing their symptoms and/or eliminating them, and reducing markers of sensitisation.

Evidence

- Nettis 200453
- Rueff 200454
- Allmers 199839
- Vandenplas 200255
- Bernstein 200356

Grade

C

Statement

In employees with latex allergy, the use of powder-free low protein latex gloves at work by their colleagues reduces symptoms, indices of disease severity and immunological markers of sensitisation in the index case.

Recommendation

Those concerned with glove purchasing policy should switch co-workers from powdered to powder-free low protein gloves or non-latex gloves as an effective way of reducing symptoms in affected employees.

Evidence

- Turjanmaa 200243
- Nettis 200453
- Rueff 200454
- Allmers 199839

Grade

C
Latex allergy: occupational aspects of management

Statements

In employees with latex-induced asthma, the use of powder-free low protein latex gloves at work by their colleagues reduces symptoms, and indices of disease severity.

In employees with latex-induced asthma or rhinitis who are using non-latex gloves, the use of powder-free low protein gloves by their colleagues reduces symptoms and indices of severity in the affected employee to a similar degree as the use of non-latex gloves by colleagues.

Recommendation

Those concerned with glove purchasing policy should be aware that for employees with latex-induced asthma or rhinitis, switching co-workers from powdered latex gloves to powder-free low protein gloves is similarly effective in reducing symptoms in the affected employee as switching co-workers to non-latex gloves. The evidence does not therefore support a need to ban latex completely from the workplace.

Evidence

- Allmers 1998
- Vandenplas 2002

Grade

C

4 Substitution by powder-free/latex-free gloves: institutions/’primary prevention’

Statements

The use of powder-free, low protein gloves reduces the incidence of latex allergy.

National strategies to encourage switching to powder-free gloves can be effective at reducing the incidence of latex allergy.

Recommendations

Those involved in health and safety policy decisions should switch their organisations from powdered to powder-free low protein gloves as an effective method of reducing the incidence of latex allergy in their organisation.

At a national level, a policy that encourages switching to powder-free low protein gloves is a proven effective method of reducing the incidence of latex allergy.

Evidence

- Jones 2004
- Allmers 2004
- Allmers 2002

Grade

C

5 Respiratory protection

Statement

The use of respiratory protective equipment by sensitised individuals with latex-related symptoms from use of powder-free latex gloves may be helpful in reducing inhalation exposure to latex allergens and symptoms.

Recommendations

Where powder-free latex gloves are being used, but there remains a significant risk to highly sensitive latex-allergic employees that cannot otherwise be adequately controlled, the use of certain respiratory protective equipment can help in reducing inhalation exposure. As with all personal protective equipment this should be a last resort when other control measures are insufficient.

Evidence

- Mitakakis 2002
- Laoprasert 1998

Grade

B/C
6 Use of hand creams

<table>
<thead>
<tr>
<th>Statement/recommendation</th>
<th>Grade</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>In people who are going to wear powder-free low protein latex gloves, the prior use of hand creams as a protective agent for latex sensitisation cannot be recommended.</td>
<td>C</td>
<td>Allmers 2001(^\text{62}) Baur 1998(^\text{63})</td>
</tr>
</tbody>
</table>

7 Immunotherapy

<table>
<thead>
<tr>
<th>Statement/recommendation</th>
<th>Grade</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunotherapy is recommended as a treatment option for those with NRL allergy, where switching to other glove options to reduce the symptoms is either not feasible or is ineffective. (Side effects and long-term efficacy are areas for further research.)</td>
<td>A/B</td>
<td>Cistero Bahima 2004(^\text{64}) Abramson 2003(^\text{65}) Pereira 2002(^\text{66}) Sastre 2003(^\text{67}) Patriarca 2002(^\text{68}) Leynadier 2000(^\text{59}) Pereira 1999(^\text{70})</td>
</tr>
</tbody>
</table>

8 Education and policy issues

Statements

At an institutional level, a complete ban on the use of powdered latex gloves reduces the incidence of sensitisation and prevalence of latex allergic symptoms. An institutional policy based on voluntary restrictions may not be as effective.

Recommendation

A complete ban on powdered latex gloves should be used by those planning institutional change as it is more effective than a policy based on voluntary restrictions.

Statements

Hospital latex policies may be poorly understood and implemented. A switch to latex-free gloves is achievable but meets with resistance, especially for surgical use.

Recommendation

Institutional change concerning latex use should be accompanied by a detailed implementation and communications plan, recognising that there may be resistance because of user preferences and concerns.

Statements/recommendations

 Appropriately targeted and sustained educational interventions, using different methods (eg leaflets, training, educational feedback analysis for different occupational groups) induce important positive behavioural changes in latex glove use. Poorly targeted information may be less effective. (This is an area for further research on UK-based occupational groups.)

Evidence

Carrozzi 2002\(^\text{74}\) Maxfield 2000\(^\text{75}\) Nettis 2004\(^\text{53}\) Trape 2000\(^\text{71}\)
9 Quality of life/employment

Statements

In employees with latex-induced asthma, where clinical considerations allow it, reduction of exposure to latex may be a useful alternative associated with similar symptom reduction and fewer socioeconomic consequences than with complete removal from exposure.

Virtually all healthcare workers and others with latex allergy can retain their jobs with careful attention to latex avoidance at work and minor changes in the workplace.

Recommendation

All but the most severe cases of latex allergy and latex-induced asthma should be managed without redeployment or redundancy, by careful personal avoidance of latex at work and minor changes in the workplace.

Evidence

Vandenplas 2002

Bernstein 2003

Filon 2006

Turjanmaa 2002

Filon 2006

Al-Otaibi 2005

Bernstein 2003

10 Smoking

Statement

There appears to be no effect of smoking on the development of latex-induced asthma.

Grade

B

Evidence

Nielsen 2005

5 Recommendations for further research

The following areas are recommended for further research.

1 UK-based research on the cost effectiveness of switching to powder-free low-protein gloves, or latex-free gloves.

2 Long-term effectiveness of targeted educational interventions in reducing latex allergy in healthcare workers.

3 A randomised controlled trial of the long-term efficacy and effects of immunotherapy in individuals with clinical latex allergy.

4 A detailed, comprehensive comparison of properties of latex gloves versus latex-free gloves comparing tactile sensitivity, microbiological impermeability, user satisfaction, and allergic reactions.

5 A follow up-study of UK healthcare workers diagnosed with latex allergy to determine employment outcomes.

6 A study to establish the optimal diagnostic procedures for latex allergy to be used by occupational health services.

7 A comparison of NHS latex allergy/glove usage policies.
Suggested audit criteria

<table>
<thead>
<tr>
<th>Key priority for implementation</th>
<th>Audit criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institutions should switch from powdered latex gloves to powder-free, low-protein gloves.</td>
<td>% of institutions using powder-free, low-protein gloves (national)</td>
</tr>
<tr>
<td>Employees with latex allergy, latex sensitivity and latex-induced asthma should be using latex-free gloves.</td>
<td>% of employees with latex allergy, latex sensitivity and latex-induced asthma using non-latex gloves (local)</td>
</tr>
<tr>
<td>All but the most severe cases of latex allergy and latex-induced asthma to be usually managed without the need for redeployment or redundancy by careful personal avoidance of latex at work and minor changes in the workplace.</td>
<td>Numbers of ill health retirements or redundancies due to latex allergy (national or local)</td>
</tr>
<tr>
<td>Appropriately targeted and sustained educational interventions, using different methods (e.g., leaflets, training, educational feedback analysis) for different occupational groups to induce important positive behavioural changes in latex glove use.</td>
<td>% of latex user groups appropriately targeted with educational interventions (local)</td>
</tr>
<tr>
<td>Those planning institutional change concerning latex use should be aware that there may be resistance because of user preferences and concerns. In addition the policy may be poorly understood.</td>
<td>% of institutions using latex gloves with a latex policy (national) % compliance with latex policy (national or local)</td>
</tr>
</tbody>
</table>
References

Latex allergy: occupational aspects of management

32 Personal communication from the University of Manchester.
34 Heilman DK, Jones RT, Swanson MC, Yunginger JW. A prospective, controlled study showing that rubber gloves are the major contributor to latex aeroallergen levels in the operating room. J Allergy Clin Immunol 1996;98(2):325–30.
37 Personal communication from UK Surgical Materials Testing Laboratory at Latex Allergy Conference, Royal Free Hospital 2007.
References

62 Allmers H. Wearing test with two different types of latex gloves with and without the use of a skin protection cream. Contact Dermatitis 2001;44(1):30–3.

Latex allergy: occupational aspects of management

Appendices

Appendix 1 Terms used in search strategy

Appendix 2 Critical appraisal form

Appendix 3 Evidence tables
Appendix 1 Terms used in search strategy

Latex Allergy evidence-based GDG search strategy

<table>
<thead>
<tr>
<th>Terms</th>
<th>Papers</th>
<th>Terms</th>
<th>Papers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latex and allergy</td>
<td>2,535</td>
<td>Rubber and allergy</td>
<td>561</td>
</tr>
<tr>
<td>Latex and hypersensitivity, delayed</td>
<td>373</td>
<td>Rubber and hypersensitivity, delayed</td>
<td>330</td>
</tr>
<tr>
<td>Latex and hypersensitivity, immediate</td>
<td>1,199</td>
<td>Rubber and hypersensitivity, immediate</td>
<td>530</td>
</tr>
<tr>
<td>Latex and dermatitis</td>
<td>754</td>
<td>Rubber and dermatitis</td>
<td>888</td>
</tr>
<tr>
<td>Latex and dermatitis, contact</td>
<td>679</td>
<td>Rubber and dermatitis, contact</td>
<td>845</td>
</tr>
<tr>
<td>Latex and dermatitis, allergic contact</td>
<td>307</td>
<td>Rubber and dermatitis, allergic contact</td>
<td>160</td>
</tr>
<tr>
<td>Latex and dermatitis, occupational</td>
<td>333</td>
<td>Rubber and dermatitis, occupational</td>
<td>238</td>
</tr>
<tr>
<td>Latex and disease</td>
<td>61</td>
<td>Rubber and disease</td>
<td>2</td>
</tr>
<tr>
<td>Latex and workplace</td>
<td>21</td>
<td>Rubber and workplace</td>
<td>4</td>
</tr>
<tr>
<td>Latex and occupations</td>
<td>21</td>
<td>Rubber and occupations</td>
<td>20</td>
</tr>
<tr>
<td>Latex and occupational groups</td>
<td>721</td>
<td>Rubber and occupational groups</td>
<td>142</td>
</tr>
<tr>
<td>Latex and employment</td>
<td>26</td>
<td>Rubber and employment</td>
<td>10</td>
</tr>
<tr>
<td>Latex and industry</td>
<td>248</td>
<td>Rubber and industry</td>
<td>511</td>
</tr>
<tr>
<td>Latex and healthcare</td>
<td>229</td>
<td>Rubber and healthcare</td>
<td>42</td>
</tr>
<tr>
<td>Latex and health care</td>
<td>602</td>
<td>Rubber and health care</td>
<td>112</td>
</tr>
<tr>
<td>Latex and healthcare sector</td>
<td>2</td>
<td>Rubber and healthcare sector</td>
<td>0</td>
</tr>
<tr>
<td>Latex and health personnel</td>
<td>709</td>
<td>Rubber and health personnel</td>
<td>137</td>
</tr>
<tr>
<td>Latex and manufacture</td>
<td>65</td>
<td>Rubber and manufacture</td>
<td>74</td>
</tr>
<tr>
<td>Latex and gloves, protective</td>
<td>1,143</td>
<td>Rubber and gloves, protective</td>
<td>335</td>
</tr>
<tr>
<td>Latex and gloves, surgical</td>
<td>771</td>
<td>Rubber and gloves, surgical</td>
<td>228</td>
</tr>
<tr>
<td>Latex and protective devices</td>
<td>630</td>
<td>Rubber and protective devices</td>
<td>428</td>
</tr>
<tr>
<td>Latex and surgeons</td>
<td>111</td>
<td>Rubber and surgeons</td>
<td>16</td>
</tr>
<tr>
<td>Latex and dentist</td>
<td>61</td>
<td>Rubber and dentist</td>
<td>18</td>
</tr>
<tr>
<td>Latex and guidelines</td>
<td>55</td>
<td>Rubber and guidelines</td>
<td>6</td>
</tr>
<tr>
<td>Latex and pre-employment</td>
<td>4</td>
<td>Rubber and pre-employment</td>
<td>0</td>
</tr>
<tr>
<td>Latex and mass screening</td>
<td>119</td>
<td>Rubber and mass screening</td>
<td>17</td>
</tr>
<tr>
<td>Latex and questionnaires</td>
<td>157</td>
<td>Rubber and questionnaires</td>
<td>32</td>
</tr>
<tr>
<td>Latex and risk assessment</td>
<td>63</td>
<td>Rubber and risk assessment</td>
<td>25</td>
</tr>
<tr>
<td>Latex and health surveillance</td>
<td>6</td>
<td>Rubber and health surveillance</td>
<td>1</td>
</tr>
<tr>
<td>Latex and asthma</td>
<td>211</td>
<td>Rubber and asthma</td>
<td>31</td>
</tr>
<tr>
<td>Latex and disease management</td>
<td>1</td>
<td>Rubber and disease management</td>
<td>0</td>
</tr>
<tr>
<td>Latex and case management</td>
<td>1</td>
<td>Rubber and case management</td>
<td>0</td>
</tr>
<tr>
<td>Latex and skin</td>
<td>39</td>
<td>Rubber and skin</td>
<td>66</td>
</tr>
<tr>
<td>Latex and skin diseases, eczematous</td>
<td>344</td>
<td>Rubber and skin diseases, eczematous</td>
<td>561</td>
</tr>
<tr>
<td>Latex and skin tests</td>
<td>691</td>
<td>Rubber and skin tests</td>
<td>282</td>
</tr>
<tr>
<td>Latex and RAST</td>
<td>163</td>
<td>Rubber and RAST</td>
<td>45</td>
</tr>
<tr>
<td>Latex and spirometry</td>
<td>8</td>
<td>Rubber and spirometry</td>
<td>7</td>
</tr>
<tr>
<td>Latex and patch tests</td>
<td>143</td>
<td>Rubber and patch tests</td>
<td>138</td>
</tr>
<tr>
<td>Latex and health facility environment</td>
<td>5</td>
<td>Rubber and health facility environment</td>
<td>3</td>
</tr>
<tr>
<td>Latex and aeroallergen</td>
<td>36</td>
<td>Rubber and aeroallergen</td>
<td>7</td>
</tr>
<tr>
<td>Latex and low-protein</td>
<td>23</td>
<td>Rubber and low-protein</td>
<td>5</td>
</tr>
<tr>
<td>Latex and tactile</td>
<td>12</td>
<td>Rubber and tactile</td>
<td>6</td>
</tr>
<tr>
<td>Latex and permeability</td>
<td>106</td>
<td>Rubber and permeability</td>
<td>80</td>
</tr>
<tr>
<td>Terms</td>
<td>Papers</td>
<td>Terms</td>
<td>Papers</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------</td>
<td>------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Latex and dexterity</td>
<td>14</td>
<td>Rubber and dexterity</td>
<td>3</td>
</tr>
<tr>
<td>Latex and alternatives</td>
<td>47</td>
<td>Rubber and alternatives</td>
<td>11</td>
</tr>
<tr>
<td>Latex and randomised controlled trial</td>
<td>121</td>
<td>Rubber and randomised controlled trial</td>
<td>45</td>
</tr>
<tr>
<td>Latex and systematic review</td>
<td>209</td>
<td>Rubber and systematic review</td>
<td>218</td>
</tr>
<tr>
<td>Latex and cross-sectional studies</td>
<td>16</td>
<td>Rubber and cross-sectional studies</td>
<td>13</td>
</tr>
<tr>
<td>Latex and longitudinal studies</td>
<td>65</td>
<td>Rubber and longitudinal studies</td>
<td>123</td>
</tr>
<tr>
<td>Latex and case control studies</td>
<td>28</td>
<td>Rubber and case control studies</td>
<td>72</td>
</tr>
<tr>
<td>Latex and cohort studies</td>
<td>72</td>
<td>Rubber and cohort studies</td>
<td>170</td>
</tr>
<tr>
<td>Latex and case report</td>
<td>276</td>
<td>Rubber and case report</td>
<td>381</td>
</tr>
<tr>
<td>Latex and sensitivity and specificity</td>
<td>77</td>
<td>Rubber and sensitivity and specificity</td>
<td>36</td>
</tr>
<tr>
<td>Latex and urticuria</td>
<td>171</td>
<td>Rubber and urticuria</td>
<td>69</td>
</tr>
<tr>
<td>Latex and reaction</td>
<td>0</td>
<td>Rubber and reaction</td>
<td>0</td>
</tr>
<tr>
<td>Latex and epidemiology</td>
<td>10</td>
<td>Rubber and epidemiology</td>
<td>0</td>
</tr>
<tr>
<td>Latex and exposure</td>
<td>101</td>
<td>Rubber and exposure</td>
<td>217</td>
</tr>
<tr>
<td>Latex and incidence</td>
<td>32</td>
<td>Rubber and incidence</td>
<td>34</td>
</tr>
</tbody>
</table>

Bold font indicates MeSH term, normal font indicates keyword.

The search was carried out using the above MeSH/keyword pairings, and the parameter 'NOT condom'.

After discarding duplicates, there were 3,724 references in total.
Appendix 2 Critical appraisal form

Reviewer(s):

Author, title:

Study type (tick all that apply)

- Randomised controlled trial
- Systematic review
- Meta-analysis
- Qualitative research
- Literature review
- Case-control study
- Longitudinal/cohorte study
- Other

(Please describe)

Initial comments:

SCREENING QUESTIONS

1. Does the paper have a clearly focused aim or research question?

 Yes □ No □ Can’t tell □

 Consider:
 1. population studied
 2. interventions delivered
 3. outcomes

2. Is the chosen method appropriate?

 Yes □ No □ Can’t tell □

 Consider whether:
 1. the authors explain their research design
 2. the chosen method address the research question

 Is it worth continuing?

 Yes □ No □

 Please explain

Detailed questions

3. Has the research been conducted rigorously?

 Yes □ No □ Can’t tell □

 Consider:
 1. search strategy described
 2. inclusions and exclusions
 3. more than one researcher
 4. resolving issues of bias
4. Is it clear how data has been analysed?
Yes ☐ No ☐ Can’t tell ☐
Consider:
1. were study results combined
2. if so was this reasonable
3. in-depth description of the analysis process
4. all participants accounted for
5. contradictory findings explained

5. Is there a clear statement of findings?
Yes ☐ No ☐ Can’t tell ☐
Consider:
1. sufficient evidence to support conclusions
2. do findings support the research question
3. precision of results
4. all important variables considered

6. How are the results presented?
Consider:
1. are the results presented numerically, i.e. p-value, OR (odds ratio)
2. are the results presented narratively

7. What is the main result?
Consider:
1. how large is the size of the result
2. how meaningful is the result
3. how would you sum up the bottom-line result in one sentence

8. Are there limitations to the research?
Yes ☐ No ☐ Can’t tell ☐
Consider:
1. was the sample size large enough
2. were all important outcomes considered
3. was the intervention process adequately described
4. was there any follow-up data
5. do the authors acknowledge weaknesses

9. Can the results be applied to a UK context?
Yes ☐ No ☐ Can’t tell ☐
Consider:
1. any discussion on how the findings can be used
2. findings considered in relation to current practice
3. estimation of benefits and costs

Accept for inclusion as evidence Yes ☐ No ☐ Can’t tell ☐
Refer to guideline leader Yes ☐ No ☐

Guideline leader’s notes
Any references to be followed up from this article?

Please attach this form to your recording sheet for appraising and grading and return to guideline leader
Appendix 3 Evidence tables

<table>
<thead>
<tr>
<th>Authors</th>
<th>Title/aims</th>
<th>Study design</th>
<th>Study population/ methodology</th>
<th>Main results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Korniewicz, Chookaew, El-Masri, Mudd, Bollinger, 2005<sup>50</sup></td>
<td>Conversion to low-protein, powder-free surgical gloves: is it worth the cost?</td>
<td>Longitudinal study</td>
<td>The aim of this study was to determine changes in overall costs associated with conversion to powder-free gloves including cost of workers’ compensation cases for natural rubber latex (NRL)-related symptoms and healthcare workers’ glove satisfaction. It was a two-year longitudinal study of 103 healthcare workers’ use of powder-free, low-protein NRL gloves, sensitisation, cost, and glove satisfaction, but with the main focus on cost benefits.</td>
<td>Before glove conversion, nearly half (44%, 36 of 82) of the operating room staff reported symptoms related to NRL exposure. At the end of the 14-month data collection period, only 27% (22 of 82) reported symptoms. A cost saving of US $10,000 per year for gloves was evident with reports of increased user satisfaction. There was a low participation rate.</td>
</tr>
<tr>
<td>Latza, Haamann, Baur, 2005<sup>51</sup></td>
<td>Effectiveness of a nationwide interdisciplinary preventive programme for latex allergy</td>
<td>Evaluation of nationwide intervention programme</td>
<td>Evaluation of an interdisciplinary German campaign targeting 5 million healthcare and welfare employees recommending powder-free, low-protein latex gloves. The campaign used various methods including brochures, video tapes, information packages, the press and trade fairs.</td>
<td>Endpoints used before and after the campaign were: number of compensation claims (as a proportion of all claims), total costs of compensation, and powder-free glove usage. Over the three years following the campaign, the total number of compensation claims and total compensation costs dropped for latex type I allergic respiratory and skin disease, as did the use of powdered latex gloves.</td>
</tr>
<tr>
<td>Phillips, Goodrich, Sullivan, 1999<sup>52</sup></td>
<td>Healthcare worker disability due to latex allergy and asthma: a cost analysis</td>
<td>A cost analysis using presumptive data</td>
<td>The basis of this study is presumptive data and its relationship to state compensation for worker ill health. The purpose was to determine the cost of a latex-safe approach, compared with that of continued latex glove use, and to identify the level of worker disability required to make the latex-safe approach financially preferable to a healthcare institution. The costs of two strategies – latex-safe versus the status quo – were calculated from the perspective of three healthcare institutions. A break-even point was calculated for each facility.</td>
<td>On the assumptions made it was found that change to non-latex gloves would be cost effective with low numbers of healthcare workers (1.07%) becoming fully disabled according to the Georgia state compensation criteria. However, compensation criteria will vary. The assumption of sensitisation rate (8%) to powder-free latex gloves is a relatively high estimate. The assumptions regarding equivalent sensitisation rates with non-powdered low-protein latex gloves are not supported by references. The assumptions made seem to over-estimate the likely prevalence of type 1 latex allergy and do not take account of the possible reduction in costs of latex alternatives as their use becomes more widespread. The option of change to non-powdered low protein latex gloves is given cursory consideration and is perhaps dismissed too readily.</td>
</tr>
<tr>
<td>SIGN</td>
<td>Result category</td>
<td>Statements</td>
<td>Conflict of interest declared?</td>
<td>Recommendation</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>------------</td>
<td>--------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2–</td>
<td>Cost analysis</td>
<td>Conversion to the use of powder-free, low-protein NRL gloves reduces healthcare worker NRL symptoms, and reduces the costs of glove purchases and workers' compensation claims.</td>
<td>None declared</td>
<td>Those concerned with glove purchasing policy should be aware that a switch to powder-free latex gloves can be cost effective (in terms of glove costs, compensation).</td>
</tr>
<tr>
<td>2–</td>
<td>Cost analysis</td>
<td>National campaigns in other countries encouraging switching from powdered to powder-free latex gloves, when successfully implemented, have led to a reduction in the total number and cost of compensation claims for type 1 latex allergic skin and respiratory disease. They have also been effective in reducing the use of powdered gloves.</td>
<td>None declared</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>Cost analysis</td>
<td>Glove selection and purchasing should take account of occupational health and safety evidence.</td>
<td>None declared</td>
<td>Those concerned with glove purchasing policy should be aware that a switch to non-latex gloves can be cost effective.</td>
</tr>
</tbody>
</table>

continued
Latex allergy: occupational aspects of management

<table>
<thead>
<tr>
<th>Authors</th>
<th>Title/aims</th>
<th>Study design</th>
<th>Study population/methodology</th>
<th>Main results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrocci, Katelaris, Burke, Widmer, 2002</td>
<td>Minimising the risks of latex allergy: the effectiveness of written information</td>
<td>Longitudinal/cohort</td>
<td>An Australian survey of 157 dental personnel with clinical latex allergy, or at high risk from latex exposure, who were educated verbally and in written form about latex allergy symptoms, hand-care strategies, latex avoidance measures and workplace implications. After six weeks a questionnaire was mailed out, designed to assess whether appropriate steps to reduce latex exposure had been taken.</td>
<td>Questionnaires were returned in 70% of cases. All respondents felt the information was easy to understand and informative. While 50% of respondents indicated that they had changed to powder-free or non-latex gloves, only five respondents were fully compliant with all instructions. Compliance with instructions regarding minimising exposure to latex in a group of latex-allergic dental personnel was poor.</td>
</tr>
<tr>
<td>Lee, Nixon, 2001</td>
<td>Reduction of use of latex gloves in food handlers: an intervention study</td>
<td>Intervention study</td>
<td>The aim of this study was to assess both the use of latex gloves by food handlers and the impact of an intervention study on reducing latex glove use in Australian food market stalls.</td>
<td>They found that 10 out of 30 stalls (33%) used latex gloves, and that following a short education program, this was reduced to one stall (3%, p=0.006). The potential to reduce latex glove use by using this intervention study was 93% (95% confidence interval of 54–100%). This highlights the need for any intervention to consider occupational groups other than healthcare workers and tailor advice to specific job roles. Reduction of latex glove use was achieved, however, long-term issues were not considered. Latex gloves are not required or appropriate for this occupation.</td>
</tr>
<tr>
<td>Maxfield, Lewis, Lachenmayr, Tisdale, Lum, 2000</td>
<td>A National Institute for Occupational Safety and Health alert sent to hospitals and the intentions of hospital decision makers to advocate for latex allergy control measures</td>
<td>Randomised controlled trial</td>
<td>Evaluation of an alert notice concerning the risk and prevention of latex allergy among healthcare workers. The alert contained four recommendations for administrative control measures that hospital decision makers could adopt to reduce the risk of latex allergy to employees; it was mailed to a random selection of directors of infection control and directors of nursing in hospitals in the USA. A random sample of these targeted recipients and a control group were surveyed by telephone (N=298).</td>
<td>Although nearly all of the respondents were concerned about latex allergy (96%), those reporting having seen the alert were significantly more likely to report an intention to advocate for one or more of the control measures; none of the differences was statistically significant. Interpretation limited by low study power, low response rates (44%) and contamination of assigned groups.</td>
</tr>
<tr>
<td>SIGN</td>
<td>Result category</td>
<td>Statements</td>
<td>Conflict of interest declared?</td>
<td>Recommendation</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>--</td>
<td>--------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2+</td>
<td>Education</td>
<td>Recommendation: Information designed to produce behavioural changes in occupational groups must be presented in different approaches, leaflets, training, feedback etc and be part of an ongoing educational programme to achieve the rates for compliance.</td>
<td>None declared</td>
<td></td>
</tr>
<tr>
<td>2–</td>
<td>Education</td>
<td>Targeted short-term education has an impact on latex use but long-term effect was not studied.</td>
<td>None declared</td>
<td></td>
</tr>
<tr>
<td>1–</td>
<td>Education</td>
<td>General untargeted alerts concerning latex allergy may not be effective.</td>
<td>None declared</td>
<td>–</td>
</tr>
</tbody>
</table>
Latex allergy: occupational aspects of management

<table>
<thead>
<tr>
<th>Authors</th>
<th>Title/aims</th>
<th>Study design</th>
<th>Study population/methodology</th>
<th>Main results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baur, Chen, Allmers, 1998</td>
<td>Can a threshold limit value for natural rubber latex airborne allergens be defined?</td>
<td>Cross-sectional quantitative survey with a joint symptom prevalence survey</td>
<td>This aimed to study the relationship between exposures to different latex aeroallergen levels and type I allergic reactions in subjects with occupational contact with latex, and to assess a threshold value for latex airborne allergens required for sensitisation and symptom elicitation. A total of 145 subjects working in 32 hospitals or operating rooms with different latex aeroallergen levels were screened. The quantified latex aeroallergen concentrations in the 32 rooms were compared with latex-related allergic symptoms.</td>
<td>Different latex aeroallergen concentrations could be detected in rooms where powdered latex gloves were used and no effective ventilation systems were installed. In environments with latex aeroallergen levels of 0.6 ng/m³ or greater, the reported workplace-related symptoms were significantly increased (p<0.02). All 22 subjects with latex-specific IgE antibodies worked in rooms contaminated with latex aeroallergens (p<0.05). By the method of aeroallergen measurement used in this study it was found that all sensitised persons and those with conjunctival or respiratory symptoms worked in rooms with >0.6 ng/m³ latex allergen. However, the assay method is an inhibition immunoassay which depends on the activity of the pooled serum used and the particular latex allergens present in the system. This means the results cannot be generalised without an agreed reference standard. Similar assays could be used to produce threshold values for that assay system or to monitor latex aeroallergen levels before and after reduction measures.</td>
</tr>
</tbody>
</table>

<p>| Koh, Ng, Leow, Goh, 2005 | A study of natural rubber latex allergens in gloves used by healthcare workers in Singapore | Laboratory-based latex glove allergen content study | Analysis of specific latex allergen content of 49 rubber gloves used in Singapore’s major hospitals and healthcare departments, focusing on Hev b1, b3, b5, b6.02 latex proteins. | Examination gloves had higher latex allergen content than surgical gloves; and powdered gloves had higher latex allergen content than non-powdered gloves. Of all examination gloves tested, 83% had allergen levels exceeding a clinically relevant threshold for type I latex allergy, as demonstrated by another study. |</p>
<table>
<thead>
<tr>
<th>SIGN</th>
<th>Result category</th>
<th>Statements</th>
<th>Conflict of interest declared?</th>
<th>Recommendation</th>
<th>Recommendation grading</th>
<th>Further research area</th>
</tr>
</thead>
<tbody>
<tr>
<td>2+</td>
<td>Exposure-response</td>
<td>Latex aeroallergen measurement may be helpful in defining and reducing latex exposures with a consequent effect on symptom prevalence.</td>
<td>None declared</td>
<td>Latex aeroallergen measurement may be helpful in defining and reducing latex exposures with consequent effects on symptom prevalence.</td>
<td>C</td>
<td>Yes</td>
</tr>
<tr>
<td>2+</td>
<td>Glove analysis</td>
<td>Examination gloves tend to have higher latex allergen content than surgical gloves. Powdered gloves have higher latex allergen content than powder-free gloves.</td>
<td>None declared</td>
<td>–</td>
<td>C</td>
<td>–</td>
</tr>
</tbody>
</table>
Latex allergy: occupational aspects of management

<table>
<thead>
<tr>
<th>Authors</th>
<th>Title/aims</th>
<th>Study design</th>
<th>Study population/methodology</th>
<th>Main results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Korniewicz, Garzon, Seltzer et al, 2004<sup>49</sup></td>
<td>Failure rates in non-latex surgical gloves</td>
<td>Randomised controlled trial</td>
<td>This study analysed 6,386 gloves used by 101 surgeons and 164 residents representing 15 surgical services. The purpose was to compare the frequency of glove defects for non-latex surgical gloves while surgeons performed routine surgery and to evaluate surgeons' satisfaction with non-latex sterile gloves. Two brands of latex gloves and six brands of non-latex gloves were tested. Gloves were collected at the end of each surgical procedure and tested for visual defects and barrier integrity using an automated calibrated water test machine consistent with FDA’s recommended standards.</td>
<td>Higher after-use defect rates occurred in non-latex surgical gloves than in latex gloves. Higher times of use were related to higher defect rates for some surgical specialties, and both surgeons and residents were less satisfied with non-latex surgical gloves. Non-latex surgical gloves have higher failure rates and lower user satisfaction than latex gloves. Both non-latex and latex gloves should be changed after two to three hours of use because the barrier of either type of glove becomes compromised with extended use.</td>
</tr>
<tr>
<td>Crippa, Belleri, Mistrello et al, 2003<sup>19</sup></td>
<td>Prevention of latex allergy among health care workers: evaluation of the extractable latex protein content in different types of medical gloves</td>
<td>Quantitative research of an experimental design</td>
<td>The total protein content and the allergic latex protein contents were evaluated with Lowry modified method and RadioAllergosorbent test inhibition assay in samples and extracts of 29 different types of medical gloves to acquire information useful for preventing latex allergy in hospital personnel.</td>
<td>Gloves vary in total protein content by manufacturer and nitrile but not vinyl gloves were also found to contain latex reactive protein. Unfortunately, although both powdered and non-powdered surgical latex gloves were tested only powdered latex examination-type gloves were studied. Some of these glove types are used in the UK. They conclude that protein content correlates with allergenicity.</td>
</tr>
<tr>
<td>Kujala, Alenius, Palosuo et al, 2002<sup>48</sup></td>
<td>Extractable latex allergens in airborne glove powder and in cut glove pieces</td>
<td>Experimental glove study</td>
<td>This was an experimental study that analysed NRL aeroallergens from medical gloves in joint relation to total airborne dust concentration and NRL allergen concentration in gloves.</td>
<td>Elevated NRL aeroallergen levels were related to a high level of airborne glove powder rather than to a high concentration of extractable NRL allergen in medical gloves. Interpretation was limited by no mention of blinding.</td>
</tr>
</tbody>
</table>
Appendix 3 Evidence tables

<table>
<thead>
<tr>
<th>SIGN</th>
<th>Result category</th>
<th>Statements</th>
<th>Conflict of interest declared?</th>
<th>Recommendation</th>
<th>Recommendation grading</th>
<th>Further research area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1+</td>
<td>Glove analysis</td>
<td>Non-latex surgical gloves have higher failure rates and lower user satisfaction than latex gloves. Good practice point: both non-latex and latex gloves should be changed after two to three hours of use because the barrier of either type of glove becomes compromised with extended use.</td>
<td>None declared</td>
<td>–</td>
<td>B</td>
<td>–</td>
</tr>
<tr>
<td>2++</td>
<td>Glove analysis</td>
<td>Some nitrile gloves made by some manufacturers may also contain latex allergenic proteins. Purchasing bodies should ensure that non-latex gloves are latex free.</td>
<td>None declared</td>
<td>Those concerned with glove purchasing policy should be aware that some non-latex gloves may contain latex allergens.</td>
<td>C</td>
<td>–</td>
</tr>
<tr>
<td>Moder-</td>
<td>Glove analysis</td>
<td>Glove powder may be a more important determinant of airborne latex allergens than glove extractable latex content.</td>
<td>None declared</td>
<td>The use of non-powdered gloves is the most effective method of reducing occupational aeroallergen exposure to latex arising from gloves.</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

continued
Latex allergy: occupational aspects of management

<table>
<thead>
<tr>
<th>Authors</th>
<th>Title/aims</th>
<th>Study design</th>
<th>Study population/methodology</th>
<th>Main results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laoprasert, Swanson, Jones et al, 1998</td>
<td>Inhalation challenge testing of latex-sensitive healthcare workers and the effectiveness of laminar flow HEPA-filtered helmets in reducing rhinoconjunctival and asthmatic reactions</td>
<td>Experimental</td>
<td>Eleven latex-sensitive volunteers with occupational asthma underwent seven sequential inhalation challenge tests by donning and discarding either vinyl gloves (challenge 1), low latex-allergen powder-free gloves (challenge 2), or high latex-allergen powdered gloves (challenges 3 to 7) for up to one hour. Volunteers wore a laminar flow helmet during all challenges but HEPA filters in the helmet were in place only during challenges 3 and 4. Flow-volume loops, symptom scores, and latex aeroallergen concentrations were measured before and during each test. The study also aimed to investigate acceptable latex aeroallergen concentrations below which latex-sensitive healthcare workers do not experience symptoms.</td>
<td>Powder-free/low allergenic latex gloves significantly reduced latex aeroallergen concentrations and therefore exposure. Laminar flow HEPA-filtered helmets were effective in reducing latex-induced rhinoconjunctivitis and asthmatic symptoms. Small numbers were used in this study.</td>
</tr>
</tbody>
</table>

Mitakakis, Tovey, Yates et al, 2002

Particulate masks and non-powdered gloves reduce latex allergen inhaled by healthcare workers

Controlled trial

This was a study of the extent to which inhalation of latex particles could be reduced by the use of protective masks or by replacing powdered latex gloves with non-powdered latex gloves. Twenty hospital workers wore nasal air samplers (NAS) and Institute of Occupational Medicine (IOM) samplers for four 20-minute periods. Subjects used powdered gloves, non-powdered gloves and no gloves during three sampling periods. In a fourth, they wore an aerosol barrier facemask or a particulate facemask (N=95) while wearing powdered gloves.

The number of particles inhaled while wearing powdered gloves was 24-fold higher than when not wearing gloves and 10-fold higher than when wearing non-powdered latex gloves (p<0.0001). Wearing an aerosol barrier mask did not significantly reduce the number of particles inhaled (p=0.108), while use of particulate masks significantly reduced the number of particles inhaled by 17-fold (p=0.003). The use of non-powdered gloves was the most effective method of reducing occupational aeroallergen exposure to latex arising from gloves. However, secondary protection using particulate masks is a valid alternative.

Clyne, Batchelor, Hanks et al, 2000

Prevention of latex allergy by selection of low-allergen gloves

Laboratory analysis of latex glove allergen content and examination of diagnostic methods for low-allergenicity gloves

An investigation of the differential allergenicity of different glove brands. Separate extracts were obtained by standard aqueous extraction from the inner and outer surfaces of 15 different (10 examination, 5 surgical) commonly used glove brands. The extracts were analysed by quantitative (bicinchoninic protein assay, IgE-ELISA, ELISA competition) and qualitative (SDS-PAGE, silver staining, IgE immunoblotting) methods for their protein and allergen contents. In addition, the glove extracts were analysed for their capacity to induce basophil histamine release and immediate skin reactions.

Glove brands vary in protein content; protein content is a poor guide to allergenicity. While the determination of total protein contents was not sufficient to identify low-allergen gloves, IgE measurements, basophil histamine release and skin testing were in good agreement and allowed the selection of low-allergen products. Findings were limited by no attempt to examine their repeatability.
Appendix 3 Evidence tables

<table>
<thead>
<tr>
<th>SIGN</th>
<th>Result category</th>
<th>Statements</th>
<th>Conflict of interest declared?</th>
<th>Recommendation</th>
<th>Recommendation grading</th>
<th>Further research area</th>
</tr>
</thead>
<tbody>
<tr>
<td>2+</td>
<td>Industrial hygiene</td>
<td>HEPA filtered helmets can be effective in reducing latex induced symptoms. Powder-free low allergenic gloves use leads to a reduction in airborne latex levels and a reduction in latex symptoms.</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>1+</td>
<td>Glove analysis</td>
<td>The use of non-powdered gloves is the most effective method of reducing occupational aero-allergen exposure to latex arising from gloves. However, secondary protection using particulate masks is a valid alternative, and may be helpful for preventing respiratory sensitisation.</td>
<td>None relevant</td>
<td>B</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>Glove analysis</td>
<td>Glove brands vary in protein content; protein content is a poor guide to allergenicity.</td>
<td>None relevant</td>
<td>C/D</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

The use of respiratory protective equipment may be helpful in reducing inhalational exposure to latex allergens and latex-related symptoms.

Those concerned with glove purchasing policy should be aware that latex glove protein content is a poor guide to allergenicity.
Latex allergy: occupational aspects of management

<table>
<thead>
<tr>
<th>Authors</th>
<th>Title/aims</th>
<th>Study design</th>
<th>Study population/methodology</th>
<th>Main results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cistero, Bahima, Sastre, et al, 2004<sup>14</sup></td>
<td>Tolerance and effects on skin reactivity to latex of sublingual rush immunotherapy with a latex extract</td>
<td>Longitudinal</td>
<td>Twenty-six patients (mean age 35.5 years) with an average history of 7.5 years of cutaneous symptoms plus respiratory symptoms (23/26) due to NRL were studied. All underwent rush sublingual therapy (four days) with a standardised NRL extract followed by a nine-week maintenance treatment. Local and systemic adverse reactions were monitored throughout the treatment. Skin reactivity to NRL extract was evaluated before, during and at the end of the treatment by latex glove-use test, rubbing test and skin prick test.</td>
<td>Out of 1,044 administered doses, 257 (24.6%) produced adverse reactions from which 21.4% were local. Only 10.1% of cases required treatment, mainly with antihistamines alone (5.8%). The glove-use test improved significantly after five days and ten weeks of treatment (p=0.003, p=0.0004 respectively), whereas the rubbing test improved significantly only after ten weeks of treatment. Doctor's assessments confirmed the results obtained with the glove-use test (p=0.003 after five days, and p=0.004 after ten weeks) but not those obtained with the rubbing test. No change was detected for SPTs. Good study but requires more testing and longer follow-up.</td>
</tr>
<tr>
<td>Leynadier, Doudou, Gaouar, et al, 2004<sup>49</sup></td>
<td>Effect of randomised double-blind randomised controlled trial of 16-weeks treatment with omalizumab in 18 healthcare workers with occupational latex allergy</td>
<td>Randomised controlled trial</td>
<td>Double-blind randomised controlled trial of 16-weeks treatment with omalizumab in 18 healthcare workers (nine active, nine placebo treatment); two on active treatment dropped out (one following an adverse event). All patients continued in their normal jobs.</td>
<td>At the end of the trial, 57% of those in the active group, but none in the placebo group, achieved a negative score on conjunctival challenge (p=0.006). Following a subsequent 'open treatment' phase with omalizumab, 11 of 15 patients had a negative latex glove challenge. Interpretation was limited by small size, sparse description of randomisation and blinding procedures, lack of confidence intervals and no information on costs.</td>
</tr>
<tr>
<td>Abramson, Puy, Weiner, 2003<sup>15</sup></td>
<td>Allergen immunotherapy for asthma</td>
<td>Systematic Cochrane review</td>
<td>A Cochrane review of specific immunotherapy for asthma presented narratively and numerically with meta-analysis.</td>
<td>Specific allergen immunotherapy reduces symptoms, medication use and the response to allergen challenge. Measures of lung function were not consistently improved. The review only lists one study relating to latex (Leynadier, 2000) and this is the only study of the effect on occupational asthma. Many studies included are based on child populations and these may differ in response to adult onset sensitisation.</td>
</tr>
<tr>
<td>Pereira, Pedro, Tavares, 2003<sup>46</sup></td>
<td>Specific immunotherapy for severe latex allergy</td>
<td>Case series</td>
<td>Four patients (three female adults and a 13 year old boy) with latex allergy. All four patients were treated with specific immunotherapy (SIT) with aqueous extract (ALK-ALK-ABELLO SA, Spain) administered subcutaneously at the hospital, by a modified rush schedule. A maintenance dose (MD) of 0.35 μg protein was established according to the magnitude of local reactions.</td>
<td>Three patients with severe latex allergy responded to specific immunotherapy. However, a fourth patient who had spina bifida did not. There was a very small number in the study.</td>
</tr>
<tr>
<td>SIGN</td>
<td>Result category</td>
<td>Statements</td>
<td>Conflict of interest declared?</td>
<td>Recommendation</td>
</tr>
<tr>
<td>------</td>
<td>-----------------</td>
<td>------------</td>
<td>-------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2++</td>
<td>Immuno-therapy</td>
<td>Recommendation: sublingual immunotherapy would be a recommended treatment option for those with NRL allergy, where switching to other glove options to reduce the symptoms is not feasible. This suggests that the long-term effects of this treatment are an area of further research.</td>
<td>None declared</td>
<td>Recommendation: immunotherapy can be recommended as treatment option for those with NRL allergy, where switching to other glove options to reduce the symptoms is either not feasible or is ineffective.</td>
</tr>
<tr>
<td>1–</td>
<td>Immuno-therapy</td>
<td>Omazilumab may have a place in the management of symptomatic latex allergy in healthcare workers.</td>
<td>None declared</td>
<td>–</td>
</tr>
<tr>
<td>1++</td>
<td>Immuno-therapy</td>
<td>Specific allergen immunotherapy reduces symptoms, medication use and the response to allergen challenge. However, there is limited evidence for its use in occupational asthma and it should therefore be considered an experimental approach.</td>
<td>None declared</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>Immuno-therapy</td>
<td>–</td>
<td>None declared</td>
<td>–</td>
</tr>
<tr>
<td>Authors</td>
<td>Title/aims</td>
<td>Study design</td>
<td>Study population/methodology</td>
<td>Main results</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--</td>
<td>-----------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Sastre, Fernandez-Nieto, Rico et al, 2003<sup>37</sup></td>
<td>Specific immunotherapy with a standardised latex extract in allergic workers: a double-blind, placebo-controlled study</td>
<td>Randomised controlled trial</td>
<td>The study comprised 24 patients allergic to NRL with contact urticaria (N=8) and rhinitis or asthma (N=16) were included (16 in the active group and 8 in the placebo group). Treatment started in a cluster immunotherapy protocol, with injections every week for three months and then every other week for another three months.</td>
<td>Clinical efficacy was shown mainly on cutaneous reactivity, although an improvement in rhinitis and asthma symptoms was also observed during specific inhalation challenges. There was no change in specific IgE to latex, or daily self-reported symptom reports. Latex-specific immunotherapy may be a useful approach for the treatment of latex allergy in sensitised workers. Latex allergen immunotherapy shows potential to reduce clinical measures of sensitisation but not sufficient to be recommended as a treatment. It is not without the risk of systemic reactions although no severe adverse responses occurred in this study.</td>
</tr>
<tr>
<td>Patriarca, Nucera, Pollastrini et al, 2002<sup>68</sup></td>
<td>Sublingual desensitisation: a new approach to latex allergy problem</td>
<td>Randomised controlled trial</td>
<td>Randomised trial of sublingual rush (four-day) desensitisation in 24 patients with latex allergy (12 in active group, 12 in placebo).</td>
<td>After three months, significant improvement (p<0.003) in symptom scores after sublingual, mucous and cutaneous latex challenges in the treated group as compared with the controls. In seven actively treated patients there was a reduction in specific IgE. Following active desensitisation, all patients were reported to be able to wear latex gloves, work in an environment with latex exposure and undergo medical procedures without any symptoms. Interpretation limited by no mention of blinding and poor quality of reporting.</td>
</tr>
<tr>
<td>Leynadier, Herman, Vervloet, 2000<sup>80</sup></td>
<td>Specific immunotherapy with a standardised latex extract versus placebo in allergic healthcare workers</td>
<td>Randomised controlled trial</td>
<td>Randomised, double-blind, placebo-controlled trial of one-year specific immunotherapy in 17 patients with latex skin allergy and rhinitis including nine with asthma (nine in active group, eight in placebo). Treatment started with a two-day course of rush immunotherapy in hospital. Efficacy assessed after six and twelve months by means of symptom and medication scores recorded on diary cards. Conjunctival provocation tests were also performed.</td>
<td>There was significant improvement in rhinitis, conjunctivitis and cutaneous symptoms, but adverse side effects were common and significant. Immunotherapy also decreased allergen-specific conjunctival reactivity. No details were provided on patient selection or process of randomisation; it was unclear how results from 'dropouts' (N=3, all placebo) were analysed.</td>
</tr>
<tr>
<td>Pereira, Rico, Lourenco et al, 1999<sup>70</sup></td>
<td>Specific immunotherapy for occupational latex allergy</td>
<td>Case report</td>
<td>This describes the response of a single subject with type 1 latex allergy to SIT by subcutaneous injection with increasing allergen potencies.</td>
<td>The subject appears to have been successfully tolerised to latex while on maintenance dosing with allergen extract. Objective evidence of decrease in wheal size on SPT before and after SIT was demonstrated together with a negative specific inhalation challenge and the ability to work in exposure without symptoms. The limited evidence makes this of experimental interest only.</td>
</tr>
</tbody>
</table>
Appendix 3 Evidence tables

<table>
<thead>
<tr>
<th>SIGN</th>
<th>Result category</th>
<th>Statements</th>
<th>Conflict of interest declared?</th>
<th>Recommendation</th>
<th>Recommendation grading</th>
<th>Further research area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1+</td>
<td>Immuno-therapy</td>
<td>Subcutaneous immunotherapy with natural rubber latex extract, at adequate doses, may be a useful treatment in reducing cutaneous reactivity, respiratory and ocular symptoms, but has significant side effects.</td>
<td>None declared</td>
<td>–</td>
<td>–</td>
<td>This would also suggest that the long-term effects of this treatment are an area of further research.</td>
</tr>
<tr>
<td>1−</td>
<td>Immuno-therapy</td>
<td>Specific, sublingual immunotherapy may be helpful in managing the symptoms of latex allergy and in allowing affected employees to remain in work.</td>
<td>None declared</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>1+</td>
<td>Immuno-therapy</td>
<td>Specific immunotherapy may be helpful in managing the symptoms of latex allergy and in allowing affected employees to remain in work. Significant risk of adverse effects.</td>
<td>Study supported by Stallergènes SA</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>Immuno-therapy</td>
<td>SIT may allow individual workers to become tolerant of continued latex exposure.</td>
<td>None declared</td>
<td>–</td>
<td>D</td>
<td>–</td>
</tr>
</tbody>
</table>

continued
Latex allergy: occupational aspects of management

<table>
<thead>
<tr>
<th>Authors</th>
<th>Title/aims</th>
<th>Study design</th>
<th>Study population/methodology</th>
<th>Main results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bernstein, Karnani, Blagini, 2003</td>
<td>Clinical and occupational outcomes in healthcare workers with natural rubber latex allergy</td>
<td>Case series</td>
<td>A total of 67 healthcare workers with NRL allergy (recruited by advertisement for a study of a skin test reagent) completed a questionnaire to evaluate clinical and economic outcomes of active work and environmental interventions subsequent to recognition of work-related symptoms associated with NRL gloves.</td>
<td>Interventions designed to reduce or eliminate latex exposure in latex allergic healthcare workers with urticaria were universally effective (11/11 who switched to non-latex gloves); and highly effective among those with rhinitis (15/18, 83%) or asthma (20/20, 100%). Four (of 24) employees with asthma changed jobs because of their allergy but only two out of healthcare work; in each case their symptoms resolved. On average these four lost income. Simple workplace interventions – switching to non-latex gloves – had been in most cases effective in the management of latex allergy among these healthcare workers. Interpretations were limited by sparse information on numbers recruited and excluded, lack of a referent population, and a small sample size of questionable representativeness.</td>
</tr>
<tr>
<td>Hamilton, Brown, 2000</td>
<td>Impact of personal avoidance practices on healthcare workers sensitised to natural rubber latex</td>
<td>Longitudinal cohort</td>
<td>In this study, 20 US anaesthetists with latex sensitisation (80% without symptoms) followed after ‘avoidance practice education’ and provision with non-latex gloves.</td>
<td>Changes in IgE titre and SPT reactivity after latex ‘avoidance’ are unpredictable; but probably require at least 15 months’ avoidance. Some symptoms disappeared after personal avoidance of latex gloves at work. Interpretation limited by small size of study population, lack of detail on how rigid latex avoidance had been and lack of clarity over length of follow-up.</td>
</tr>
<tr>
<td>Nettis, Colanardi, Ferrannini, 2004</td>
<td>Type I latex allergy in healthcare workers with latex-induced contact urticaria syndrome: a follow-up study</td>
<td>Longitudinal cohort</td>
<td>The aim of this follow-up study to determine long-term health consequences in healthcare workers with type I latex allergy with latex-related contact urticaria syndrome, of providing appropriate information and practical avoidance education. Evaluation of immunological markers and use test for latex allergy following avoidance measures three to seven years after diagnosis of latex allergy in 17 healthcare workers. All follow-up subjects stopped using latex gloves. Co-workers either switched to non-latex or used powder free, low protein gloves if necessary. Initial and follow-up visits included: a detailed questionnaire, skin prick test (SPT) with glove eluates and with commercial latex extract, SPT with common inhalant and food extracts, serum specific immunoglobulin (Ig)E to latex and some foods and the glove use test.</td>
<td>Decreased SPT reactivity, and serum specific IgE with increased time to positive use test in all but one subject suggesting that NRL avoidance can reduce markers of sensitisation and symptoms in the workplace. On re-examination, 11 (64.7%) subjects showed positive SPTs to contemporaneous extract and 10 (58.8%) patients showed a positive SPT to commercial extract. Of the nine patients with detectable levels of serum latex specific IgE at first evaluation, four (44.4%) became negative and four were assigned to at least one class lower. Only one (11.1%) employee had higher radioallergosorbent test values than those at the latex allergy diagnosis. At follow-up, the 17 individuals had positive latex challenge results, although the duration of exposure caused a reaction increased. Problems were a small sample size, and the extractable latex content of the gloves in use test is not given for either the initial or follow-up test.</td>
</tr>
<tr>
<td>SIGN</td>
<td>Result category</td>
<td>Statements</td>
<td>Conflict of interest declared?</td>
<td>Recommendation grading</td>
</tr>
<tr>
<td>------</td>
<td>-----------------</td>
<td>---</td>
<td>--------------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>3</td>
<td>Latex-free follow-up, jobs</td>
<td>Switching to non-latex gloves may be effective at abolishing or controlling symptoms of latex induced rhinitis/asthma, and to a lesser extent urticaria.</td>
<td>None declared</td>
<td>D</td>
</tr>
<tr>
<td>2–</td>
<td>Latex-free follow-up/ education</td>
<td>The effects of the removal of powdered gloves and of personal latex avoidance on latex IgE sensitisation is uncertain.</td>
<td>One author entitled to royalties for skin test reagents</td>
<td>–</td>
</tr>
<tr>
<td>2+</td>
<td>Latex-free follow-up – management/ education</td>
<td>NRL avoidance can reduce markers of sensitisation and symptoms in the workplace.</td>
<td>None declared</td>
<td>C</td>
</tr>
</tbody>
</table>

In employees with latex allergy or sensitisation, the personal avoidance of latex gloves at work reduces symptoms, indices of disease severity and immunological markers of sensitisation. In employees with latex allergy, the use of powder-free latex gloves at work by their colleagues reduces symptoms, indices of disease severity and immunological markers of sensitisation in the index case.

continued
<table>
<thead>
<tr>
<th>Authors</th>
<th>Title/aims</th>
<th>Study design</th>
<th>Study population/methodology</th>
<th>Main results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rueff, Schopf, Putz, Przybilla, 2004</td>
<td>Effect of reduced exposure on natural rubber latex sensitisation in healthcare workers</td>
<td>Longitudinal cohort study</td>
<td>Immunological follow-up of 88 healthcare workers with NRL allergy or NRL sensitisation after preventive measures (NRL free gloves) and introduction of powder-free latex gloves for all other healthcare workers</td>
<td>Avoidance measures reduce immunologic markers of NRL sensitisation and symptoms over a period of three years. At the last follow-up, a loss of skin prick test reactivity to NRL was observed in one of 29 subjects with NRL allergy (3.4%) and 16 of 35 with NRLS (45.7%) with previous skin test reactions (p<.001). Among those subjects who demonstrated a kU/L level (CAP class) equal to or greater than class I to NRL at the initial examination, NRL-specific IgE was absent at the last follow-up in 28 (32.0%) of 25 subjects with NRL allergy and 14 of 36 (38.9%) with NRL sensitisation. At the final examination, they could no longer demonstrate sensitisation to NRL by any method in 24 of 88 (27.3%) healthcare workers. Complete loss of NRL sensitisation was less frequent in subjects with NRL allergy than in those with NRL sensitisation (1 of 33 or 3% versus 23 of 55 or 41.8%; p<.001).</td>
</tr>
<tr>
<td>Vandenplas, Jamart, Delwiche et al, 2002</td>
<td>Occupational asthma caused by natural rubber latex: outcome according to cessation or reduction of exposure</td>
<td>Longitudinal/cohort study</td>
<td>The purpose of this study was to compare the health and socio-economic outcomes of subjects with latex-induced asthma before and after reduction (latex-free exam gloves and low allergen latex sterile gloves) or cessation (latex gloves never used in their environment) of exposure to latex. The study investigates 36 subjects with latex-induced asthma as ascertained by specific inhalation challenges after a median follow-up of 56 months (range: 12 to 92 months). Initial and follow-up visits included use of a detailed questionnaire and measurement of the concentration of histamine causing a 20% fall in FEV(1) (PC(20)). At follow-up, information on employment, financial status and quality of life was collected.</td>
<td>At follow-up, 16 subjects were no longer exposed to latex, whereas 20 subjects had reduced exposure. In the subjects who avoided exposure, asthma severity decreased from a median score of 8.5 to 3.5 (p=.001) and the median histamine PC(20) value increased from 0.4 mg/mL to 2.3 mg/mL (p=.002). In the subjects who reduced their exposure, asthma-severity score improved from 6.5 to 2.5 (p<.001) and PC(20) values rose from 0.5 mg/mL to 2.4 mg/mL (p<.001). Cessation of exposure to latex was associated with asthma-related work disability (69%) and loss of income (62%) more frequently than was reduction of exposure (35% and 30%, respectively). Note: participants were not randomly assigned to reduction or removal so for some who were removed this may have been the only pragmatic course of action. Compensation systems are different which may affect the likelihood of removal from exposure.</td>
</tr>
</tbody>
</table>
In employees with latex allergy or sensitisation, the personal avoidance of latex gloves at work reduces symptoms, indices of disease severity and immunological markers of sensitisation. In employees with latex allergy, the use of powder-free latex gloves at work by their colleagues reduces symptoms, indices of disease severity and immunological markers of sensitisation in the index case.
Latex allergy: occupational aspects of management

<table>
<thead>
<tr>
<th>Authors</th>
<th>Title/aims</th>
<th>Study design</th>
<th>Study population/methodology</th>
<th>Main results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turjanmaa, Kanto, Kautiainen et al, 2002<sup>23</sup></td>
<td>Long-term outcome of 160 adult patients with natural rubber latex allergy</td>
<td>Longitudinal/cohort</td>
<td>A study of 160 (of 174) NRL allergic patients (healthcare and non-healthcare workers) looking at occupational outcomes when all gloves in the working environment were changed either to low allergen latex gloves, or non-latex gloves. Outcomes assessed by both questionnaire and examination for hand eczema.</td>
<td>None of the healthcare workers had changed work because of natural rubber latex allergy; and only 38% had continuing hand eczema (significant decrease from 54% in healthcare workers, p=0.019). Nearly all (98%) of the non-healthcare workers continued with their previous jobs. There was no evidence of any fall in specific IgE. Interpretation limited by lack of comparison groups and variable length of follow-up.</td>
</tr>
<tr>
<td>Ailmers, Brehler, Chen et al, 1998<sup>24</sup></td>
<td>Reduction of latex aeroallergens and latex-specific IgE antibodies in sensitised workers after removal of powdered natural rubber latex gloves in a hospital</td>
<td>Longitudinal/cohort</td>
<td>A prospective study in healthcare workers to appraise the efficacy of preventing exposure by eliminating powdered NRL gloves from the workplace and giving NRL-free material to sensitised workers. Sensitisation of healthcare workers to NRL was determined by SPTs and measurements of specific IgE antibodies. NRL allergen concentrations in room air were measured before and after substitution of powdered NRL gloves with powder-free or synthetic gloves in different departments of a hospital and determined by a competitive inhibition immunoassay.</td>
<td>The prevalence of healthcare workers with positive skin prick test responses and NRL-specific IgE-positive healthcare workers was 8% (N=7) among the 90 examined staff members before the intervention started. All 7 reported glove-related allergic symptoms. Six of seven sensitised subjects had a significant decrease of latex-specific IgE antibody concentrations during follow-up examinations. Within 24 hours after substitution took place, NRL aeroallergen levels fell below the detection limit in areas with synthetic gloves or powder-free NRL gloves alike. Use of asthma medication and antiallergic drugs could be discontinued by two healthcare workers with NRL-related respiratory tract symptoms. However, the latex content of powdered gloves used during the study period changed to a lower level due to manufacturing changes. The provision of non-latex gloves to sensitised subjects may explain the fall in specific IgE levels as much as any changes in environmental aeroallergen.</td>
</tr>
</tbody>
</table>
Appendix 3 Evidence tables

<table>
<thead>
<tr>
<th>SIGN</th>
<th>Result category</th>
<th>Statements</th>
<th>Conflict of interest declared?</th>
<th>Recommendation</th>
<th>Recommendation grading</th>
<th>Further research area</th>
</tr>
</thead>
<tbody>
<tr>
<td>2+</td>
<td>Latex powdered glove substitution and latex free – management, jobs</td>
<td>Virtually all healthcare workers and others with latex allergy can retain their jobs with careful attention to latex avoidance at work. The prevalence of hand eczema in allergic healthcare workers falls if they start to use latex-free or low-allergen gloves.</td>
<td>Supported by grant from Ansell Healthcare</td>
<td>–</td>
<td>C</td>
<td>–</td>
</tr>
</tbody>
</table>

| 2+ | Latex powdered glove/latex free substitution – management, aeroallergens | A change from powdered latex gloves to non-powdered or non-latex gloves is likely to significantly reduce measurable aeroallergen levels. Such measures may allow latex sensitised or allergic subjects to remain in their jobs and may prevent the progression of allergy. | None declared | – | C | – |

continued
Latex allergy: occupational aspects of management

<table>
<thead>
<tr>
<th>Authors</th>
<th>Title/aims</th>
<th>Study design</th>
<th>Study population/methodology</th>
<th>Main results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jones, Rolf, Stingl et al, 2004<sup>57</sup></td>
<td>Longitudinal study of sensitisation to natural rubber latex among dental school students using powder-free gloves</td>
<td>Longitudinal/cohort</td>
<td>This was a cohort study of first-year dental students throughout four study years during exposure to powder-free low protein latex gloves. Their atopic status was determined by skin prick testing using a panel of common allergens, and any sensitivity to latex proteins and the cross-reacting food allergens assessed. Skin prick testing was carried out on the volunteers using latex, avocado, kiwi, banana, grass pollens, tree pollen, house dust mites and cat dander. Each volunteer completed a questionnaire detailing allergic history and any previous latex exposure.</td>
<td>The study concluded that exposure to powder-free low protein latex gloves was not associated with subsequent sensitisation over five years in a population with a high atopic incidence. No evidence of sensitisation to latex was found after the exposure period once the baseline sensitisation rate had been established. Initial latex skin testing was positive in 3 of the 63 students followed throughout their period of study. Subsequent testing gave a negative result in one student and one declined retesting. The third continued to give a positive response on each testing; she wore only nitrile gloves and remained free of clinical NRL allergy symptoms.</td>
</tr>
<tr>
<td>Filon, Radman, 2006<sup>76</sup></td>
<td>Latex allergy: a follow-up study of 1,040 healthcare workers</td>
<td>Longitudinal</td>
<td>This was a prospective three-year follow-up study of 1,040 Italian healthcare workers (90% of those exposed to latex) before and after change from powdered to powder free latex gloves. It looked at latex-related symptoms and sensitisation by means of a questionnaire, a medical examination, SPTs and IgE specific antibody assay, and had a 92% response rate.</td>
<td>1. Most glove-related symptoms (prevalence 22%) were mild. 2. Prevalence of positive SPT to latex 6%; poor agreement with measurement of specific IgE. 3. No evidence of job change or loss from latex allergy over three years of follow-up. 4. Most symptoms improved over the period of follow-up – perhaps attributable to improved latex policy and careful case handling. Hand eczema was significantly reduced (p=0.0001) at follow-up and disappeared in seven cases (29% of those with eczema at baseline). Urticaria disappeared in 44% of those with this symptom at baseline but was still present on contact with latex gloves in 24%. Subjects with rhinitis had to use non-latex gloves but continued to work in the same place. There was a reduction in symptoms among asthmatic subjects, but in these cases too, symptoms reappeared on occasional contact with latex gloves.</td>
</tr>
<tr>
<td>Allmers, Schmengler, John, 2004<sup>58</sup></td>
<td>Decreasing incidence of occupational contact urticaria caused by natural rubber latex allergy in German healthcare workers</td>
<td>Longitudinal</td>
<td>The study measured the impact of a national ban on powdered latex gloves in German healthcare workers, using insurance data of 1.8 million German healthcare workers. Banning powdered NRL gloves resulted in an 80% decrease in suspected/confirmed cases of NRL contact urticaria being reported.</td>
<td></td>
</tr>
<tr>
<td>SIGN</td>
<td>Result category</td>
<td>Statements</td>
<td>Conflict of interest declared?</td>
<td>Recommendation</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>---</td>
<td>--------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2+</td>
<td>Latex powder glove substitution – primary prevention</td>
<td>Powder-free low protein latex gloves may not induce latex allergy.</td>
<td>None declared</td>
<td>For those involved in institutional health and safety policy decisions, the use of powder-free, low protein gloves reduces the incidence of latex allergy.</td>
</tr>
<tr>
<td>2+</td>
<td>Latex powdered glove substitution – management, jobs</td>
<td>For healthcare workers, substitution of powdered latex gloves to powder-free, low allergenic protein gloves can reduce symptoms of both type I and type IV rubber glove allergy; and allow, with careful case handling, affected employees to continue in their job.</td>
<td>None declared</td>
<td>–</td>
</tr>
<tr>
<td>2+</td>
<td>Latex powdered glove substitution – primary</td>
<td>National strategies to encourage switching to powder-free gloves can be effective at reducing the incidence of latex allergy</td>
<td>None declared</td>
<td>–</td>
</tr>
</tbody>
</table>

continued
Latex allergy: occupational aspects of management

<table>
<thead>
<tr>
<th>Authors</th>
<th>Title/aims</th>
<th>Study design</th>
<th>Study population/methodology</th>
<th>Main results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allmers, Schmengler, Skudlik, 2002⁶⁰</td>
<td>Primary prevention of natural rubber latex allergy in the German healthcare system through education and intervention</td>
<td>Longitudinal study</td>
<td>This study assessed the effects of intervention to reduce the occurrence of NRL allergy in personnel working in healthcare facilities insured by the German statutory accident insurance company for healthcare workers, by switching to powder-free NRL gloves nationally. The timing of introduction of intervention strategies, such as education of both physicians and administrators, together with regulations demanding that healthcare facilities only purchase low-protein, powder-free NRL gloves are reported. Annual numbers of reported suspected cases of NRL-caused occupational allergies and the amount and type of gloves used in German acute care hospitals since 1986 are reviewed using information form the Statutory Insurance Database.</td>
<td>Primary prevention of occupational allergies can be achieved on a national scale. Reduction of powdered NRL gloves in a hospital environment led to a decrease in allergy incidence after a two-year lag. Reported cases of sensitisation increased when educational campaign was followed by a decrease in conjunction with reduction in powdered NRL glove use.</td>
</tr>
<tr>
<td>Trape, Schenck, Warren, 2000⁷¹</td>
<td>Latex gloves use and symptoms in healthcare workers one year after implementation of a policy restricting the use of powdered gloves</td>
<td>Longitudinal study using two cross-sectional surveys to establish point prevalence of self-reported latex glove-related symptoms</td>
<td>This comprised two independent cross-sectional surveys on healthcare workers carried out one year after implementation of a latex policy. A population-based survey of hospital healthcare workers (National Surveillance System for Hospital healthcare workers (NaSH), N=1,073), and a more detailed survey of healthcare workers stratified by exposure to latex gloves, the Latex Symptom Survey (LSS), N=475. The latex policy offered healthcare workers a choice of powder-free latex and latex-free gloves for non-sterile procedures. Powdered latex gloves were still available for sterile procedures for the duration of the study but after a year the policy was extended to sterile procedures also.</td>
<td>Prevalence of dermatitis symptoms self-reported by latex glove users was 40.3% (NaSH survey), and 50.0% (LSS) but one of the surveys had only a 34% response rate. Increasing latex glove exposure correlated with increasing symptom reports. Dermatitis symptoms related to latex glove use were reported much more frequently than aerosol or urticarial symptoms. Healthcare workers, and even those with symptoms continued to prefer and use latex gloves in more than 80% of cases. They conclude that a latex policy that restricts the availability of powdered latex gloves is not enough to reduce skin symptoms or prevalence of latex sensitisation in healthcare workers. Employee education at a pre-placement evaluation should be carried out to identify and protect employees sensitised to latex.</td>
</tr>
<tr>
<td>Hermesch, Spackman, Dodge, Salazar, 1999⁴⁰</td>
<td>Effect of powder-free latex examination glove use on airborne powder levels in a dental school clinic</td>
<td>Experimental study</td>
<td>A study describing the airborne cornstarch levels before and during the use of non-powdered latex gloves with further results after the reintroduction of powdered gloves.</td>
<td>The use of non-powdered latex gloves produced a significant reduction in airborne powder levels. Additionally when powdered gloves were used airborne powder counts rose significantly during the clinic session but this was not seen with non-powdered gloves.</td>
</tr>
<tr>
<td>SIGN</td>
<td>Result category</td>
<td>Statements</td>
<td>Conflict of interest declared?</td>
<td>Recommendation</td>
</tr>
<tr>
<td>------</td>
<td>-----------------</td>
<td>------------</td>
<td>-------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2+</td>
<td>Latex powdered glove substitution – primary</td>
<td>National strategies to encourage switching to powder-free gloves may be effective at reducing the incidence of latex allergy.</td>
<td>None declared</td>
<td>–</td>
</tr>
<tr>
<td>2+</td>
<td>Latex powdered glove substitution – primary, policy</td>
<td>As part of a latex policy, employee education at a pre-placement evaluation should be carried out to identify and protect employees sensitised to latex.</td>
<td>None declared</td>
<td>At an institutional level, a complete ban on the use of powdered latex gloves reduces the incidence of sensitisation and prevalence of latex allergic symptoms. An institutional policy based on voluntary restrictions may not be as effective.</td>
</tr>
<tr>
<td>2+</td>
<td>Latex powdered glove substitution – primary prevention and management</td>
<td>The use of non-powdered gloves reduces airborne powder levels.</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

continued
Latex allergy: occupational aspects of management

<table>
<thead>
<tr>
<th>Authors</th>
<th>Title/aims</th>
<th>Study design</th>
<th>Study population/methodology</th>
<th>Main results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nielsen, Olsen, Larsen et al, 2005</td>
<td>IgE-mediated sensitisation, rhinitis and asthma from occupational exposures. Smoking as a model for airborne adjuvants?</td>
<td>Systematic literature review</td>
<td>This study describes the effect of smoking on IgE mediated allergy found in various studies, including only two on latex.</td>
<td>There is no effect of smoking on the development of asthma in latex allergy. Only two studies are available for latex and the effect of smoking was not the major research question for these studies.</td>
</tr>
<tr>
<td>Bell, Watt, Straine, 2005</td>
<td>Impact of a latex policy on an acute NHS hospital: an audit</td>
<td>Audit/cross-sectional survey</td>
<td>This describes the impact of latex policy on a large (5,000 staff) acute UK hospital.</td>
<td>The latex policy was not implemented effectively. Generally there was poor compliance with latex policy and better compliance where a senior staff member had latex allergy. Interpretation limited by no details on base population, no details on blinding, most information self-reported and interpreted; but some objective criteria such as glove availability. Only managers were interviewed; and there are descriptive results only.</td>
</tr>
<tr>
<td>Brown, Hamilton, McAllister, 2003</td>
<td>How healthcare organisations can establish and conduct a program for a latex-safe environment</td>
<td>Report of a hospital latex task force</td>
<td>A summary report of a US (Johns Hopkins Hospital) interdisciplinary latex task force addressing the issue of creating, implementing and evaluating a latex-safe environment. Some interesting experiences with a ‘latex-safe’ policy but not strictly ‘research’.</td>
<td>A switch to vinyl gloves was unacceptable; a switch to nitrile was more acceptable but there was significant cost implications and surgical resistance. The switch to nitrile examination gloves was successfully completed, but conversion to non-latex surgical gloves was less successful, with costs being the overwhelming impediment. Staff education is important.</td>
</tr>
<tr>
<td>Al-Otaibi, Tarlo, House, 2005</td>
<td>Quality of life in patients with latex allergy</td>
<td>Case series</td>
<td>This is the results of a questionnaire about quality of life completed by 31 (of 56) latex allergic patients attending clinic at a Toronto hospital. Thirty respondents were healthcare workers.</td>
<td>Results analysed with simple descriptive statistics only: 42% had changed their jobs (not occupations) to reduce latex exposure; 13% had stopped work for the same reason. No major effects on quality of life; any negative effects seem to diminish with time. 'The various manifestations of latex allergy can be managed so there is no significant interference with quality of life'. The interpretation was limited by small numbers and poor response rate.</td>
</tr>
</tbody>
</table>
Appendix 3 Evidence tables

<table>
<thead>
<tr>
<th>SIGN</th>
<th>Result category</th>
<th>Statements</th>
<th>Conflict of interest declared?</th>
<th>Recommendation</th>
<th>Recommendation grading</th>
<th>Further research area</th>
</tr>
</thead>
<tbody>
<tr>
<td>2++</td>
<td>Miscellaneous</td>
<td>There appears to be no effect of smoking on the development of latex induced asthma.</td>
<td>None declared</td>
<td>–</td>
<td>B</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>Policy</td>
<td>Hospital latex policies may be poorly understood and implemented.</td>
<td>None declared</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>4</td>
<td>Policy</td>
<td>A switch to latex-free gloves is achievable but meets with resistance, especially for surgical use. Staff education is valuable.</td>
<td>Support from Center for Disease Control grant</td>
<td>Those planning institutional change concerning latex use should be aware that there may be resistance, and the policy may be poorly understood.</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>Quality of life</td>
<td>Occupational exposures for healthcare workers with latex allergy can usually be managed so that there is no significant effect on quality of life.</td>
<td>None declared</td>
<td>–</td>
<td>D</td>
<td>–</td>
</tr>
</tbody>
</table>
Latex allergy: occupational aspects of management

<table>
<thead>
<tr>
<th>Authors</th>
<th>Title/aims</th>
<th>Study design</th>
<th>Study population/methodology</th>
<th>Main results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kujala, Karvonen, Laara et al, 1997<sup>2</sup></td>
<td>Postal questionnaire study of disability associated with latex allergy among healthcare workers in Finland</td>
<td>Case-control study</td>
<td>This small study looked at the different responses to the self-completed Work Ability Index (WAI) between 32 latex allergic healthcare workers and 51 controls. A secondary aim of the study was to evaluate sensitivity and specificity of a self-administered latex allergy questionnaire as a screening tool for latex allergy.</td>
<td>There was a significant reduction in WAI for latex allergic healthcare workers when compared with controls. The sensitivity and specificity of a questionnaire was estimated at 84 and 98% respectively when there was a positive response to one of three skin symptoms and one mucosal symptom. A weighting was applied to some of the WAI items, however the evidence for using the weighting applied is not given. Untransformed data is provided in results. Sample size was small but with a good response rate. Matching for atopy was not discussed in detail although it was recognised that this may be a confounder and some efforts to control for this were made. Subjects with latex allergy were drawn nationally but controls were recruited locally. This could influence WAI responses.</td>
</tr>
<tr>
<td>Allmers, 2001<sup>2</sup></td>
<td>Wearing test with two different types of latex gloves with and without the use of a skin protection cream</td>
<td>Longitudinal/cohort</td>
<td>This study aimed to determine if skin protection cream can reduce adverse reactions to latex. 72 subjects reporting symptoms indicative of Type I hypersensitivity reactions to natural rubber latex (NRL) gloves were included. Forty-four subjects had a positive prick test to NRL and all underwent wearing tests using 2 types of NRL gloves with high (n=63) and low (n=70) allergen contents. The outcome recorded was frequency of skin prick test responses.</td>
<td>There were 18 hypersensitive reactions induced in 63 subjects wearing NRL gloves with high allergen contents, which was reduced to 11 with skin protection cream. No change was observed in the reaction in NRL gloves of low allergen content, when cream was used/not used, however the low allergen content gloves only triggered a response in 2/70 individuals.</td>
</tr>
<tr>
<td>Baur, Chen, Allmers, Rauf-Heimsoth, 1998<sup>3</sup></td>
<td>Results of wearing test with two different latex gloves with and without the use of skin-protection cream</td>
<td>Controlled trial (not randomised)</td>
<td>This was a comparison of the use of NRL gloves in 109 latex allergic subjects with and without the prior skin application of a skin protection cream. Two glove types were used with differing allergen contents.</td>
<td>The application of a so-called skin protective cream increased the number of positive use tests in subjects demonstrated to have sensitisation and reporting glove allergy. A positive use test when wearing high soluble allergen NRL gloves was significantly associated with both positive SPT and CAP tests to latex. Only two subjects reacted to low protein non-powdered gloves used and then only when the skin protection cream had been applied. Skin protective creams may cause leaching of NRL allergen from gloves and enhance its skin penetration.</td>
</tr>
<tr>
<td>SIGN</td>
<td>Result category</td>
<td>Statements</td>
<td>Conflict of interest declared?</td>
<td>Recommendation</td>
</tr>
<tr>
<td>------</td>
<td>-----------------</td>
<td>---</td>
<td>-------------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>2–</td>
<td>Quality of life</td>
<td>Latex allergy has an adverse effect on workability scores.</td>
<td>None declared</td>
<td>Jobs do not have to be changed! Most cases can be managed with minor changes in the workplace.</td>
</tr>
<tr>
<td>2–</td>
<td>Skin cream</td>
<td>The biggest improvement in skin reaction came as a result of wearing low allergen gloves, part of the method of testing. The improvement using the hand cream was not significant, nor would it be cost effective. Recommendation: replacement of high allergen content gloves with low allergen content latex gloves</td>
<td>None declared</td>
<td>–</td>
</tr>
<tr>
<td>–</td>
<td>Skin cream</td>
<td>High allergen contents in latex gloves frequently elicit skin responses in NRL-sensitised subjects. Skin-protection creams may favour the uptake of allergens from gloves, thus increasing allergic reactions. This finding should be considered when recommending skin care protocols.</td>
<td>None declared</td>
<td>In people who are going to wear latex gloves, the prior use of hand creams cannot be recommended.</td>
</tr>
</tbody>
</table>